0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 计算数学 > 高振荡微分方程几何积分法(英文版)

相同语种的商品

浏览历史

高振荡微分方程几何积分法(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
高振荡微分方程几何积分法(英文版)
  • 书号:9787030671127
    作者:吴新元
  • 外文书名:
  • 丛书名:
  • 装帧:平脊精装
    开本:B5
  • 页数:450
    字数:450000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2021-01-01
  • 所属分类:
  • 定价: ¥199.00元
    售价: ¥199.00元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

The subject of this book is geometric integrators for differential equations with highly oscillatory solutions, including oscillation-preserving integrators, continuous-stage ERKN integrators, nonlinear stability and convergence analysis of ERKN integrators, functionally-fitted energy-preserving integrators, exponential collocation methods, volume-preserving exponential integrators, global error bounds of one-stage ERKN integrators for semilinear wave equations, linearly-fitted conservative/dissipative integrators, energy-preserving schemes for Klein–Gordon equations, Hermite–Birkhoff time integrators for Klein–Gordon equations, symplectic approximations for Klein–Gordon equations, continuous-stage modified leap-frog scheme for high-dimensional Hamiltonian wave equations, semi-analytical exponential RKN integrators,long-time momentum and actions behaviour of energy-preserving methods.The new geometric integrators are applied to problems with highly oscillatory solutions from sciences and engineering.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Chapter 1 Oscillation-Preserving Integrators For Highly Oscillatory Systems of Second-Order Odes 1
    1.1 Introduction 1
    1.2 Standard Runge-Kutta-Nystrom Schemes From The Matrix-Variation-Of-Constants Formula 5
    1.3 Erkn Integrators And Arkn Methods Based On The Matrix-Variation-Of-Constants Formula 6
    1.3.1 Arkn Integrators 7
    1.3.2 Erkn Integrators 8
    1.4 Oscillation-Preserving Integrators 11
    1.5 Towards Highly Oscillatory Nonlinear Hamiltonian Systems 13
    1.5.1 Ssmerkn Integrators 14
    1.5.2 Trigonometric Fourier Collocation Methods 15
    1.5.3 The Aavf Method And Avf Formula 18
    1.6 Other Concerns Relating To Highly Oscillatory Problems 21
    1.6.1 Gautschi-Iype Methods 21
    1.6.2 General Erkn Methods For (1.1) 21
    1.6.3 Towards The Application To Semilinear Kg Equations 22
    1.7 Numerical Experiments 26
    1.8 Conclusions And Discussion 36
    References 37
    Chapter 2 Continuous-Stage Erkn Integrators For Second-Order Odes With Highly Oscillatory Solutions 42
    2.1 Introduction 42
    2.2 Extended Runge-Kutta-Nystrom Methods 45
    2.3 Continuous-Stage Erkn Methods And Order Conditions 47
    2.4 Energy-Preserving Conditions And Symmetric Conditions 50
    2.5 Linear Stability Analysis 53
    2.6 Construction of Cserkn Methods 55
    2.6.1 The Case of Order Two 56
    2.6.2 The Case of Order Four 57
    2.7 Numerical Experiments 59
    2.8 Conclusions And Discussions 63
    References 64
    Chapter 3 Stability And Convergence Analysis of Erkn Integrators For Second-Order Odes With Highly Oscillatory Solutions 68
    3.1 Introduction 68
    3.2 Nonlinear Stability And Convergence Analysis For Erkn Integrators 72
    3.2.1 Nonlinear Stability of The Matrix-Yariation-Of-Constants Formula 72
    3.2.2 Nonlinear Stability And Convergence of Erkn Integrators 77
    3.3 Erkn Integrators With Fourier Pseudospectral Discretisation For Semilinear Wave Equations 83
    3.3.1 Time Discretisation: Erkn Time Integrators 84
    3.3.2 Spatial Discretisation: Fourier Pseudospectral Method 85
    3.3.3 Error Bounds of The Erkn-Fp Method (3.57)-(3.58) 87
    3.4 Numerical Experiments 97
    3.5 Conclusions 107
    References 107
    Chapter 4 Functionally-Fitted Energy -Preserving Integrators For Poisson Systems 111
    4.1 Introduction 111
    4.2 Functionally-Fitted Ep Integrators 113
    4.3 Implementation Issues 115
    4.4 The Existence, Uniqueness And Smoothness 117
    4.5 Algebraic Order 120
    4.6 Practical FFEP Integrators 123
    4.7 Numerical Experiments 126
    4.8 Conclusions 129
    References 130
    Chapter 5 Exponential Collocation Methods For Conservative Or Dissipative Systems 133
    5.1 Introduction 133
    5.2 Formulation of Methods 135
    5.3 Methods For Second-Order Odes With Highly Oscillatory Solutions 138
    5.4 Energy-Preserving Analysis 140
    5.5 Existence, Uniqueness And Smoothness of The Solution 142
    5.6 Algebraic Order 144
    5.7 Application In Stiff Gradient Systems 147
    5.8 Practical Examples of Exponential Collocation Methods 148
    5.8.1 An Example of Ecr Methods 148
    5.8.2 An Example of Tcr Methods 148
    5.8.3 An Example of Rkncr Methods 149
    5.9 Numerical Experiments 150
    5.10 Concluding Remarks And Discussions 156
    References 157
    Chapter 6 Volume-Preserving Exponential Integrators 161
    6.1 Introduction 161
    6.2 Exponential Integrators 163
    6.3 Vp Condition of Exponential Integrators 164
    6.4 Vp Results For Different Vector Fields 167
    6.4.1 Vector Fields In 167
    6.4.2 Vector Fields In 168
    6.4.3 Vector Fields In 170
    6.4.4 Vector Fields In (2) 171
    6.5 Applications To Various Problems 173
    6.5.1 Highly Oscillatory Second-Order Systems 173
    6.5.2 Separable Partitioned Systems 176
    6.5.3 Other Applications 178
    6.6 Numerical Examples 179
    6.7 Conclusions 188
    References 188
    Chapter 7 Global Error Bounds of One-Stage Explicit Erkn Integrators For Semilinear Wave Equations 191
    7.1 Introduction 191
    7.2 Preliminaries 192
    7.2.1 Spectral Semidiscretisation In Space 192
    7.2.2 Erkn Integrators 194
    7.3 Main Result 195
    7.4 The Lower-Order Error Bounds In Higher-Order Sobolev Spaces 196
    7.4.1 Regularity Over One Time Step 196
    7.4.2 Local Error Bound 197
    7.4.3 Stability 199
    7.4.4 Proof of Theorem 7.1 For-1≤α≤0 200
    7.5 Higher-Order Error Bounds In Lower-Order Sobolev Spaces 201
    7.6 Numerical Experiments 204
    7.7 Concluding Remarks 207
    References 207
    Chapter 8 Linearly-Fitted Conservative (Dissipative) Schemes For Nonlinear Wave Equations 210
    8.1 Introduction 210
    8.2 Preliminaries 212
    8.3 Extended Discrete Gradient Method 215
    8.4 Numerical Experiments 221
    8.4.1 Implementation Issues 222
    8.4.2 Conservative Wave Equations 223
    8.4.3 Dissipative Wave Equations 230
    8.5 Conclusions 232
    References 233
    Chapter 9 Energy-Preserving Schemes For High-Dimensional Nonlinear Kg Equations 235
    9.1 Introduction 235
    9.2 Formulation of Energy-Preserving Schemes 238
    9.3 Error Analysis 243
    9.4 Analysis of The Nonlinear Stability 245
    9.5 Convergence 248
    9.6 Implementation Issues of Kgdg Scheme 251
    9.7 Numerical Experiments 255
    9.7.1 One-Dimensional Problems 255
    9.7.2 Two-Dimensional Problems 260
    9.8 Concluding Remarks 262
    References 263
    Chapter 10 High-Order Symmetric Hermite-Birkhoff Time Integrators For Semilinear Kg Equations 267
    10.1 Introduction 267
    10.2 The Symmetric And High-Order Hermite-Birkhoff Time Integration Formula 269
    10.2.1 The Operator-Variation-Of-Constants Formula 269
    10.2.2 The Formulation of The Time Integrators 271
    10.3 Stability of The Fully Discrete Scheme 278
    10.3.1 Linear Stability Analysis 280
    10.3.2 Nonlinear Stability Analysis 282
    10.4 Convergence of The Fully Discrete Scheme 284
    10.4.1 Consistency 284
    10.4.2 Convergence 286
    10.5 Spatial Discretisation 292
    10.6 Waveform Relaxation And Its Convergence 296
    10.7 Numerical Experiments 298
    10.8 Conclusions And Discussions 308
    References 309
    Chapter 11 Symplectic Approximations For Efficiently Solving Semilinear Kg Equations 313
    11.1 Introduction 313
    11.2 Abstract Hamiltonian System of Odes 316
    11.3 Formulation of The Symplectic Approximation 317
    11.3.1 The Time Approximation 317
    11.3.2 Symplectic Conditions For The Fully Discrete Scheme 319
    11.3.3 Error Analysis of The Extended Rkn-Type Approximation 322
    11.4 Analysis of The Nonlinear Stability 326
    11.5 Convergence 329
    11.6 Symplectic Extended Rkn-Type Approximation Schemes 333
    11.6.1 One-Stage Symplectic Approximation Schemes 333
    11.6.2 Two-Stage Symplectic Approximation Schemes 334
    11.7 Numerical Experiments 336
    11.8 Concluding Remarks 347
    References 348
    Chapter 12 Continuous-Stage Leap-Frog Schemes For Semilinear Hamiltonian Wave Equations 352
    12.1 Introduction 352
    12.2 A Continuous-Stage Modified Leap-Frog Scheme 354
    12.3 Convergence 359
    12.4 Energy-Preserving Continuous-Stage Modified Lf Schemes 364
    12.5 Symplectic Continuous-Stage Modified Lf Scheme 366
    12.6 Explicit Continuous-Stage Modified Lf Scheme 368
    12.7 Numerical Experiments 371
    12.8 Conclusions And Discussions 378
    References 378
    Chapter 13 Semi-Analytical Erkn Integrators For Solving High-Dimensional Nonlinear Wave Equations 383
    13.1 Introduction 383
    13.2 Preliminaries 388
    13.3 Fast Implementation of Erkn Integrators 390
    13.4 The Case of Symplectic Erkn Integrators 393
    13.5 Analysis of Computational Cost And Memory Usage 397
    13.5.1 Computational Cost At Each Time Step 397
    13.5.2 Occupied Memory And Maximum Number of Spatial Mesh Grids 399
    13.6 Numerical Experiments 401
    13.7 Conclusions And Discussions 410
    References 411
    Chapter 14 Long-Time Momentum And Actions Behaviour of Energy-
    Preserving Methods For Wave Equations 414
    14.1 Introduction 414
    14.2 Full Discretisation 415
    14.2.1 Spectral Semidiscretisation In Space 415
    14.2.2 Ep Methods In Time 416
    14.3 Main Result And Numerical Experiment 417
    14.3.1 Main Result 418
    14.3.2 Numerical Experiments 420
    14.4 The Proof of The Main Result 424
    14.4.1 The Outline of The Proof 424
    14.4.2 Modulation Equations 425
    14.4.3 Reverse Picard Iteration 429
    14.4.4 Rescaling And Estimation of The Nonlinear Terms 430
    14.4.5 Reformulation of The Reverse Picard Iteration 431
    14.4.6 Bounds of The Coefficient Functions 433
    14.4.7 Defects 435
    14.4.8 Remainders 438
    14.4.9 Almost Invariants 439
    14.4.10 From Short To Long-Time Intervals 443
    14.5 Analysis For The Aavf Method With A Quadrature Rule 443
    14.6 Conclusions And Discussions 444
    References 445
    Index 448
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证