0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 高等数学 > 基本解方法的理论及应用

相同语种的商品

销售排行榜

浏览历史

基本解方法的理论及应用


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
基本解方法的理论及应用
  • 书号:9787030749161
    作者:李子才,黄宏财,魏益民,张理评
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:458
    字数:600000
    语种:en
  • 出版社:科学出版社
    出版时间:2023-11-01
  • 所属分类:高等数学
  • 定价: ¥168.00元
    售价: ¥109.20元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

基本解方法最早由V.D. Kupradze 在文章Potential methods in elasticity J.N.Sneddon 和 R.Hill (Eds), Progress in Solid Mechanics, Vol.III, Amsterdam, pp.1-259, 1963 中提出。自 1963 年开始,出现大量基本解方法的计算,但鲜有对基本解方法的分析。本书中,给出基本解方法的数值算法、特点,主要着力于建立其误差和稳定性的理论分析。 本书中的严格分析(以及源节点的选择)为MFS提供了坚实的理论基础,使其成为偏微分方程(PDE)的有效且称职的数值方法。内容源于作者已经发表的论文,本书介绍了MFS的基本和重要要素。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Acknowledgements
    CHAPTER1 Introduction 1
    1.1 Historic Review 1
    1.2 Basic Algorithms 3
    1.3 Numerical Experiments 5
    1.4 Characteristics of the MFS 11
    Part I Laplace’s Equation 15
    CHAPTER2 Dirichlet Problems 19
    2.1 Basic Algorithms of MFS 19
    2.2 Preliminary Lemmas 21
    2.3 Main Theorems 27
    2.4 Stability Analysis for DiskDomains 32
    2.5 Proof Methodology 39
    CHAPTER3 Neumann Problems 41
    3.1 Introduction 41
    3.2 Method of Fundamental Solutions 42
    3.2.1 Description of Algorithms 42
    3.2.2 Main Results of Analysisand Their Applications 44
    3.3 Stability Analysis of DiskDomains 45
    3.4 Stability Analysis for BoundedSimply-Connected Domains 49
    3.4.1 Trefftz Methods 50
    3.4.2 Collocation Trefftz Methods 52
    3.5 Error Estimates 54
    3.6 Concluding Remarks 58
    CHAPTER4 Other Boundary Problems 61
    4.1 Mixed Boundary Condition Problems 61
    4.2 Interior Boundary Conditions 66
    4.3 Annular Domains 70
    CHAPTER5 Combined Methods 77
    5.1 Combined Methods 77
    5.2 Variant Combinations of FS and PS 79
    5.2.1 Simplified Hybrid Combination 79
    5.2.2 Hybrid Plus Penalty Combination 81
    5.2.3 Indirect Combination 84
    5.3 Combinations of MFS with Other Domain Methods 86
    5.3.1 Combined with FEM 86
    5.3.2 Combined with FDM 87
    5.3.3 Combined with Radial Basis Functions 90
    5.4 Singularity Problems by Combination of MFS and MPS 91
    CHAPTER 6 Source Nodes on Elliptic Pseudo-Boundaries 99
    6.1 Introduction 99
    6.2 Algorithms of MFS 101
    6.3 Error Analysis 103
    6.3.1 Preliminary Lemmas 103
    6.3.2 Error Bounds 107
    6.4 Stability Analysis 113
    6.5 Selection of Pseudo-Boundaries 119
    6.6 Numerical Experiments 121
    6.7 Concluding Remarks 124
    Part II. Helmholtz’s Equations and Other Equations 125
    CHAPTER7 Helmholtz Equationsin Simply-Connected Domains 127
    7.1 Introduction 127
    7.2 Algorithms 128
    7.3 Error Analysis for Bessel Functions 131
    7.3.1 Preliminary Lemmas 131
    7.3.2 Error Bounds with Small k 134
    7.3.3 Exploration of Bounded k 140
    7.4 Stability Analysis for Disk Domains 146
    7.5 Application to BKM 149
    CHAPTER8 Exterior Problems of Helmholtz Equation 155
    8.1 Introduction 155
    8.2 Standard MFS 157
    8.2.1 Basic Algorithms 157
    8.2.2 Brief Error Analysis 159
    8.3 Numerical Characteristics of Spurious Eigenvalues by MFS 161
    8.4 Modified MFS 165
    8.5 Error Analysis for Modified MFS 166
    8.5.1 Preliminary Lemmas 167
    8.5.2 Error Bounds 175
    8.6 Stability Analysis for Modified MFS 179
    8.7 Numerical Experiments 181
    8.7.1 Circular Pseudo-Boundaries by Two MFS 181
    8.7.2 Non-Circular Pseudo-Boundaries by Modified MFS 186
    8.8 Concluding Remarks 188
    CHAPTER9 Helmholtz Equations in Bounded Multiply-Connected Domains 191
    9.1 Introduction 191
    9.2 Bounded Simply-Connected Domains 192
    9.2.1 Algorithms 192
    9.2.2 Brief Error Analysis 193
    9.3 Bounded Multiply-Connected Domains 197
    9.3.1 Algorithms 197
    9.3.2 ErrorAnalysis 198
    9.4 Stability Analysis for Ring Domains 201
    9.5 Numerical Experiments 210
    9.6 Concluding Remarks 214
    CHAPTER10 Biharmonic Equations 215
    10.1 Introduction 215
    10.2 Preliminary Lemmas 217
    10.3 Error Bounds 224
    10.4 Stability Analysis for Circular Domains 228
    10.4.1 Approaches for Seeking Eigenvalues 228
    10.4.2 Eigenvalues λk(Φ) and λk(DΦ) 231
    10.4.3 Bounds of Condition Number 236
    10.5 Numerical Experiments 242
    CHAPTER11 Elastic Problems 247
    11.1 Introduction 247
    11.2 Linear Elastostatics Problemsin2D 247
    11.2.1 Basic Theory 247
    11.2.2 Traction Boundary Conditions 249
    11.2.3 Fundamental Solutions 250
    11.2.4 Particular Solutions 251
    11.3 HTM,MFS and MPS 252
    11.3.1 Algorithms of HTM 252
    11.3.2 Algorithms of MFS and MPS 252
    11.4 Errors Between FS and PS 254
    11.4.1 Preliminary Lemmas 254
    11.4.2 Polynomials Pn Approximated by *and * 257
    11.4.3 Other Proof for Theorem11.4.1 258
    11.4.4 The Polynomials LPn Approximated by Principal FS 261
    11.5 Error Bounds for MFS and HTM 264
    11.5.1 The MFS 264
    11.5.2 The HTM Using FS 266
    11.6 Numerical Experiments 268
    11.7 Appendix:Addition Theorems of FS in Linear Elastostatics 271
    11.7.1 Preliminary Lemmas 271
    11.7.2 Addition Theorems 277
    CHAPTER12 Cauchy Problems 281
    12.1 Introduction 281
    12.2 Algorithms of Collocation Trefftz Methods 281
    12.3 Characteristics 284
    12.3.1 Existence and Uniqueness 284
    12.3.2 Ill-Posedness of Inverse Problems 287
    12.4 Error and Stability Analysis 290
    12.4.1 Error Analysis 290
    12.4.2 Stability Analysis 291
    12.5 Applications to Cauchy Data 295
    12.5.1 Errors on Cauchy Boundary 295
    12.5.2 Sensitivity of Solutionson Cauchy Data 296
    12.6 Numerical Experiments and ConcludingRemarks 297
    CHAPTER13 3D Problems 301
    13.1 Introduction 301
    13.2 Method of Particular Solutions 302
    13.3 Method of Fundamental Solutions 309
    13.3.1 Algorithms 309
    13.3.2 LinktoMPS 310
    13.4 Error Analysisfor MFS 313
    13.4.1 Preliminary Lemmas 314
    13.4.2 ErrorBounds 321
    13.5 Numerical Experiments 324
    13.5.1 Collocation Equations on Γ 324
    13.5.2 By MFS 325
    13.5.3 By MPS 330
    13.6 Concluding Remarks 331
    13.7 Appendix: 3D Problems of Helmholtz Equations 332
    13.7.1 Interior Dirichlet Problems 332
    13.7.2 Exterior Dirichlet Problems 333
    Part III. Selection of Source Nodes and Related Topics 335
    CHAPTER 14 Comparisons of MFSandMPS 339
    14.1 Introduction 339
    14.2 TwoBasis Boundary Methods 340
    14.2.1 Method of Particular Solutions 340
    14.2.2 Method of Fundamental Solutions 342
    14.3 The MFS-QR 346
    14.3.1 Algorithms in Elliptic Coordinates 346
    14.3.2 Characteristics of MFS-QR 349
    14.4 Numerical Experiments and Comparisons 354
    14.4.1 Highly Smooth Boundary Data 355
    14.4.2 Boundary Data with Strong Singularity 356
    14.4.3 Better Pseudo-Boundaries 358
    14.5 Concluding Remarks 360
    CHAPTER 15 Stability Analysis for Smooth Closed Pseudo-Boundaries 361
    15.1 Introduction 361
    15.2 Relations Between FS and PS 362
    15.3 Bounds of Cond for Non-Elliptic Pseudo-Boundaries 365
    CHAPTER 16 Singularity Problems from Source Functions; Removal Techniques 375
    16.1 Introduction 376
    16.2 Analytical Framework for CTM in[169] 378
    16.3 Error Bounds for Singular Solutions from (16.1.3) 380
    16.4 Singularity for Polygonal Domains and Arbitrary Domains 383
    16.5 Removal Techniques for Laplace’s Equation 384
    16.5.1 For the Case of Q OutsideΓ 384
    16.5.2 For the Case of Q InsideΓ under the Image Node Existing 386
    16.6 Numerical Experiments 388
    16.7 Applications to Amoeba-Like Domains 390
    16.7.1 Numerical Results 390
    16.7.2 Removal Techniques Linked to Source Identification Problems 394
    16.8 Concluding Remarks 399
    CHAPTER 17 Source Nodeson Pseudo Radial-Lines 401
    17.1 Introduction 401
    17.2 Pseudo Radial-Lines 404
    17.2.1 One Pseudo Radial-Line 404
    17.2.2 Two Pseudo Radial-Lines 408
    17.3 Stability Analysis 409
    17.3.1 Lower Bound Estimates of Cond for Basic Case 409
    17.3.2 Upper Bound Estimates of Cond for Variant Case by CaseII 412
    17.4 Numerical Experiments 415
    17.4.1 Disk Domains 415
    17.4.2 Non-Disk Domains 420
    17.5 Concluding Remarks 424
    Epilogue 427
    References 431
    Glossary of Symbols 443
    Index 449
    Book list of the Series in Information and Computational Science 455
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证