0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 计算数学 > 偏好空间同位模式挖掘(英)

相同语种的商品

浏览历史

偏好空间同位模式挖掘(英)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
偏好空间同位模式挖掘(英)
  • 书号:9787030713728
    作者:王丽珍
  • 外文书名:
  • 装帧:圆脊精装
    开本:16(23k)
  • 页数:294
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2022-01-01
  • 所属分类:
  • 定价: ¥198.00元
    售价: ¥156.42元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书以应用需求(领域驱动)为导向,系统介绍了本书作者多年在领域驱动空间模式挖掘技术方面的研究成果。具体包括不需要距离阈值的空间co-location模式挖掘技术、极大频繁空间co-location模式挖掘技术、极大亚频繁空间co-location模式挖掘技术、SPI-闭频繁co-location模式挖掘技术、非冗余co-location模式挖掘技术、高效用co-location模式挖掘技术、实例带效用的高效用co-location模式挖掘技术、带主导特征的频繁co-location模式挖掘技术和基于概率模型的交互式二次挖掘用户感兴趣的co-location模式挖掘技术等。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction 1
    1.1 The Background and Applications 1
    1.2 The Evolution and Development 5
    1.3 The Challenges and Issues 7
    1.4 Content and Organization of the Book 8
    2 Maximal Prevalent Co-location Patterns 11
    2.1 Introduction 11
    2.2 Why the MCHT Method Is Proposed for Mining MPCPs 12
    2.3 Formal Problem Statement and Appropriate Mining Framework 17
    2.3.1 Co-Location Patterns 17
    2.3.2 Related Work 19
    2.3.3 Contributions and Novelties 21
    2.4 The Novel Mining Solution 22
    2.4.1 The Overall Mining Framework 22
    2.4.2 Bit-String-Based Maximal Clique Enumeration 23
    2.4.3 Constructing the Participating Instance Hash Table 28
    2.4.4 Calculating Participation Indexes and Filtering MPCPs 30
    2.4.5 The Analysis of Time and Space Complexities 32
    2.5 Experiments 33
    2.5.1 Data Sets 33
    2.5.2 Experimental Objectives 34
    2.5.3 Experimental Results and Analysis 34
    2.6 Chapter Summary 47
    3 Maximal Sub-prevalent Co-location Patterns 49
    3.1 Introduction 49
    3.2 Basic Concepts and Properties 51
    3.3 A Prefix-Tree-Based Algorithm (PTBA) 54
    3.3.1 Basic Idea 54
    3.3.2 Algorithm 56
    3.3.3 Analysis and Pruning 57
    3.4 A Partition-Based Algorithm (PBA) 58
    3.4.1 Basic Idea 58
    3.4.2 Algorithm 62
    3.4.3 Analysis of Computational Complexity 64
    3.5 Comparison of PBA and PTBA 64
    3.6 Experimental Evaluation 66
    3.6.1 Synthetic Data Generation 67
    3.6.2 Comparison of Computational Complexity Factors 67
    3.6.3 Comparison of Expected Costs Involved in Identifying Candidates 69
    3.6.4 Comparison of Candidate Pruning Ratio 69
    3.6.5 Effects of the Parameter Clumpy 70
    3.6.6 Scalability Tests 70
    3.6.7 Evaluation with Real Data Sets 72
    3.7 Related Work 75
    3.8 Chapter Summary 77
    4 SPI-Closed Prevalent Co-location Patterns 79
    4.1 Introduction 79
    4.2 Why SPI-Closed Prevalent Co-locations Improve Mining 81
    4.3 The Concept of SPI-Closed and Its Properties 83
    4.3.1 Classic Co-location Pattern Mining 83
    4.3.2 The Concept of SPI-Closed 85
    4.3.3 The Properties of SPI-Closed 86
    4.4 SPI-Closed Miner 89
    4.4.1 Preprocessing and Candidate Generation 89
    4.4.2 Computing Co-location Instances and Their PI Values 93
    4.4.3 The SPI-Closed Miner 93
    4.5 Qualitative Analysis of the SPI-Closed Miner 95
    4.5.1 Discovering the Correct SPI-Closed Co-location Set Ω 96
    4.5.2 The Running Time of SPI-Closed Miner 96
    4.6 Experimental Evaluation 96
    4.6.1 Experiments on Real-life Data Sets 97
    4.6.2 Experiments with Synthetic Data Sets 100
    4.7 Related Work 104
    4.8 Chapter Summary 105
    5 Top-k Probabilistically Prevalent Co-location Patterns 107
    5.1 Introduction 107
    5.2 Why Mining Top-k Probabilistically Prevalent Co-location Patterns (Top-k PPCPs) 108
    5.3 Definitions 110
    5.3.1 Spatially Uncertain Data 110
    5.3.2 Prevalent Co-locations 112
    5.3.3 Prevalence Probability 113
    5.3.4 Min_PI-Prevalence Probabilities 114
    5.3.5 Top-k PPCPs 115
    5.4 A Framework of Mining Top-k PPCPs 115
    5.4.1 Basic Algorithm 115
    5.4.2 Analysis and Pruning of Algorithm 5.1 116
    5.5 Improved Computation of P(c, min_PI) 117
    5.5.1 0-1-Optimization 117
    5.5.2 The Matrix Method 118
    5.5.3 Polynomial Matrices 122
    5.6 Approximate Computation of P(c, min_PI) 125
    5.7 Experimental Evaluations 128
    5.7.1 Evaluation on Synthetic Data Sets 128
    5.7.2 Evaluation on Real Data Sets 134
    5.8 Chapter Summary 136
    6 Non-redundant Prevalent Co-location Patterns 137
    6.1 Introduction 137
    6.2 Why We Need to Explore Non-redundant Prevalent Co-locations 139
    6.3 Problem Definition 141
    6.3.1 Semantic Distance 141
    6.3.2 δ-Covered 143
    6.3.3 The Problem Definition and Analysis 145
    6.4 The RRclosed Method 148
    6.5 The RRnull Method 150
    6.5.1 The Method 150
    6.5.2 The Algorithm 153
    6.5.3 The Correctness Analysis 155
    6.5.4 The Time Complexity Analysis 156
    6.5.5 Comparative Analysis 157
    6.6 Experimental Results 158
    6.6.1 On the Three Real Data Sets 158
    6.6.2 On the Synthetic Data Sets 161
    6.7 Related Work 165
    6.8 Chapter Summary 166
    7 Dominant Spatial Co-location Patterns 167
    7.1 Introduction 167
    7.2 Why Dominant SCPs Are Useful to Mine 168
    7.3 Related Work 171
    7.4 Preliminaries and Problem Formulation 172
    7.4.1 Preliminaries 173
    7.4.2 Definitions 174
    7.4.3 Formal Problem Formulation 179
    7.4.4 Discussion of Progress 179
    7.5 Proposed Algorithm for Mining Dominant SCPs 180
    7.5.1 Basic Algorithm for Mining Dominant SCPs 180
    7.5.2 Pruning Strategies 182
    7.5.3 An Improved Algorithm 186
    7.5.4 Comparison of Complexity 187
    7.6 Experimental Study 188
    7.6.1 Data Sets 188
    7.6.2 Efficiency 189
    7.6.3 Effectiveness 193
    7.6.4 Real Applications 196
    7.7 Chapter Summary 198
    8 High Utility Co-location Patterns 201
    8.1 Introduction 201
    8.2 Why We Need High Utility Co-location Pattern Mining 202
    8.3 Related Work 204
    8.3.1 Spatial Co-location Pattern Mining 204
    8.3.2 Utility Itemset Mining 205
    8.4 Problem Definition 206
    8.5 A Basic Mining Approach 208
    8.6 Extended Pruning Approach 208
    8.6.1 Related Definitions 209
    8.6.2 Extended Pruning Algorithm (EPA) 210
    8.7 Partial Pruning Approach 212
    8.7.1 Related Definitions 212
    8.7.2 Partial Pruning Algorithm (PPA) 217
    8.8 Experiments 218
    8.8.1 Differences Between Mining Prevalent SCPs and High Utility SCPs 218
    8.8.2 Effect of the Number of Total Instances n 219
    8.8.3 Effect of the Distance Threshold d 219
    8.8.4 Effect of the Pattern Utility Ratio Threshold ξ 219
    8.8.5 Effect of s in vss 219
    8.8.6 Comparing PPA and EPA with a Different Utility Ratio Threshold ξ 220
    8.9 Chapter Summary 221
    9 High Utility Co-location Patterns with Instance Utility 223
    9.1 Introduction 223
    9.2 Why We Need Instance Utility with Spatial Data 224
    9.3 Related Work 226
    9.4 Related Concepts 228
    9.5 A Basic Algorithm 231
    9.6 Pruning Strategies 232
    9.7 Experimental Analysis 236
    9.7.1 Data Sets 236
    9.7.2 The Quality of Mining Results 236
    9.7.3 Evaluation of Pruning Strategies 237
    9.8 Chapter Summary 240
    10 Interactively Post-mining User-Preferred Co-location Patterns with a Probabilistic Model 241
    10.1 Introduction 241
    10.2 Why We Need Interactive Probabilistic Post-mining 242
    10.3 Related Work 245
    10.4 Problem Statement 246
    10.4.1 Basic Concept 246
    10.4.2 Subjective Preference Measure 247
    10.4.3 Formal Problem Statement 247
    10.5 Probabilistic Model 248
    10.5.1 Basic Assumptions 248
    10.5.2 Probabilistic Model 248
    10.5.3 Discussion 251
    10.6 The Complete Algorithm 252
    10.6.1 The Algorithm 252
    10.6.2 Two Optimization Strategies 253
    10.6.3 The Time Complexity Analysis 254
    10.7 Experimental Results 255
    10.7.1 Experimental Setting 255
    10.7.2 The Simulator 255
    10.7.3 Accuracy Evaluation on Real Data Sets 257
    10.7.4 Accuracy Evaluation on Synthetic Data Sets 262
    10.7.5 Sample Co-location Selection 263
    10.8 Chapter Summary 264
    11 Vector-Degree: A General Similarity Measure for Co-location Patterns 265
    11.1 Introduction 265
    11.2 Why We Measure the Similarity Between SCPs 266
    11.3 Preliminaries 268
    11.3.1 Spatial Co-location Pattern (SCP) 268
    11.3.2 A Toy Example 269
    11.3.3 Problem Statement 270
    11.4 The Method 270
    11.4.1 Maximal Cliques Enumeration Algorithm 270
    11.4.2 A Representation Model of SCPs 274
    11.4.3 Vector-Degree: the Similarity Measure of SCPs 278
    11.4.4 Grouping SCPs Based on Vector-Degree 279
    11.5 Experimental Evaluations 279
    11.5.1 Data Sets 280
    11.5.2 Results 280
    11.6 Chapter Summary 284
    References 285
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证