0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 应用数学 > 生理机能中的深度学习(英文版)

相同作者的商品

相同语种的商品

浏览历史

生理机能中的深度学习(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
生理机能中的深度学习(英文版)
  • 书号:9787030705730
    作者:曹文明,曹桂涛
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:194
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2022-10-01
  • 所属分类:
  • 定价: ¥349.00元
    售价: ¥349.00元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

随着年龄的增长,生理机能的下降,如果不采取必要的措施,会导致高血压、心脏病等一些疾病的并发症。如果老年人能够进行生理评估,这些风险可以大大降低。近年来,由于预防对老年人的重要性,许多研究人员将注意力集中在对人体生理功能的评估上。我们写这本书是为了介绍我们认为是生理功能评估的关键技术,帮助读者更好地了解生理功能评估。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    Contents
    Preface
    Chapter 1 Motion Detection with Skeleton Tracking 1
    1.1 Introduction 1
    1.1.1 Fog Computing-based Methods for Physiological Function Assessment 1
    1.1.2 Motion Detection with Skeleton Tracking for Physiological Function Assessment 2
    1.2 Motion Detection Method 3
    1.2.1 Physiological Function Assessment Based on Fog Computing 3
    1.2.2 Motion Recognition with RGB-D Cameras 5
    1.3 Validation for Motion Detection 9
    1.3.1 Comparison with Digital Angle Protractor 9
    1.3.2 Effect of Motion Detection 9
    1.3.3 Effect of Gait Analysis 10
    1.4 3D Stereo Human Trajectory Learning and Prediction 11
    1.4.1 Method Overview 11
    1.4.2 Twin Deep Neural Networks with Stereo Constraint for 3D Human Pose Estimation 12
    1.4.3 Constructing the Forward and Backward Prediction Networks 15
    1.5 Validation for 3D Pedestrian Trajectory Prediction 17
    1.5.1 3D Pedestrian Trajectory Dataset 17
    1.5.2 Evaluation Metrics and Protocol 17
    1.5.3 Performance Evaluations and Comparison 18
    1.6 Conclusions 19
    References 19
    Chapter 2 Facial Expression and Emotion Recognition 22
    2.1 Introduction 22
    2.2 Methodologies 23
    2.2.1 Patch Manifold 23
    2.2.2 Patch Discriminative Analysis 24
    2.2.3 Optimization 25
    2.3 Patch Discriminative Analysis Network 27
    2.4 Facial Expression Recognition Validation 28
    2.5 Methodologies Based on LMDAP 30
    2.5.1 Discriminant Embedding Space 30
    2.5.2 Convolutional Kernel Learning Based on the Proposed LMDAP Algorithm 32
    2.5.3 Local Manifold Discriminant Analysis Projections Network 36
    2.6 Validation for Method Based on LMDAP 37
    2.6.1 Datasets 37
    2.6.2 Parameter Setting 38
    2.6.3 Face Recognition Experiments on Extended Yale B Dataset 39
    2.6.4 Face Recognition Experiments on AR Dataset 40
    2.6.5 Face Recognition Experiments on FERET Dataset 41
    2.6.6 Face Verification: YTF 42
    2.6.7 Impact of Parameters 42
    2.6.8 Impact of the Number Block Size 42
    2.6.9 Impact of the Block Overlap Ratio 43
    2.7 Emotion Recognition Based Acoustic Features 43
    2.7.1 MFCC Related Features Extraction 43
    2.7.2 Speech Emotion Recognition Based on CNN-LSTM 44
    2.7.3 Attention-based CNN-BiLSTM Recognition Model (CNNAttBiLSTM) 45
    2.8 Validation for Speech Emotion Recognition 46
    2.8.1 Datasets 46
    2.8.2 Speech Emotion Recognition Using CNN-LSTM 47
    2.8.3 Speech Emotion Recognition Using CNN-AttBiLSTM 48
    2.9 Conclusions 50
    References 51
    Chapter 3 GA-convolutional Neural Networks and Action Classification 56
    3.1 Introduction 56
    3.2 Related Work 58
    3.2.1 Invariant Features/Descriptors of Motion 58
    3.2.2 Skeleton Based Human Motion Recognition 60
    3.3 GA-convolutional Neural Networks 61
    3.3.1 Geometric Algebra: An Outline 61
    3.3.2 Joints Angle and Orientation Human Posture Descriptor Based on Geometric Algebra 64
    3.4 Skeleton-based Ensemble Human Motion Recognition 66
    3.5  Validation for Motion Recognition 67
    3.5.1 SZU 3D Skeleton & Orientation Exercise Action Recognition Dataset 67
    3.5.2 SYSU 3D Human-object Interaction Dataset 69
    3.6 Reduced Geometric Algebra (RGA) 71
    3.6.1 The Basics of RGA 71
    3.6.2 Convolution in RGA 73
    3.7 Convolutional Neural Networks Based on Reduced Geometric Algebra 74
    3.7.1 The Structure of RGA-CNNs 74
    3.7.2 RGA Neuron Model 74
    3.7.3 RGA Multilayer Perceptron (RGA-MLP) and Its Learning Algorithm 75
    3.7.4 RGA-CNNs 77
    3.8 Classification Experiments and Analysis 79
    3.8.1 Datasets 79
    3.8.2 Experimental Setup 80
    3.8.3 3D Geometrical Shapes Classification 81
    3.9 Conclusions 81
    References 82
    Chapter 4 Object Tracking 85
    4.1 Introduction 85
    4.2 Related Work 88
    4.2.1 SiamFC Tracker 88
    4.2.2 Optical Flow for Object Tracking 89
    4.2.3 Attention Model 89
    4.3 Main Work 89
    4.3.1 TVNet 89
    4.3.2 Aggregation Using Optical Flow 90
    4.3.3 Sequential Scoring Model 91
    4.3.4 Aggregation Between Different Frames 92
    4.3.5 Optical Flow Attention Model 93
    4.3.6 Online Tracking 95
    4.4 Validation for Object Tracking 96
    4.4.1  Results on VOT 96
    4.4.2  Ablation Analysis 97
    4.5 The Static-adaptive Tracking Algorithm 99
    4.5.1 Virtual Keypoints 100
    4.5.2 Fuzzy Logic Judgment 102
    4.5.3 Weight-Based Correspondence 103
    4.6 Results 104
    4.6.1 Comparison with Its Baseline 105
    4.6.2 Computation Speed Evaluation 105
    4.7 Conclusions 107
    References 107
    Chapter 5 Cross-modal Hashing 112
    5.1 Introduction 112
    5.2 Related Concepts 114
    5.2.1 Hamming Distance Sorting 114
    5.2.2 Hash Table Retrieval 114
    5.2.3 Similarity Measures 114
    5.2.4 Performance Evaluation Criteria 116
    5.2.5 Element-wise Sign Function 117
    5.3 Methodologies 118
    5.3.1 Data-independent Methods 118
    5.3.2 Single-modal Methods 119
    5.3.3 Multi/Cross-modal Methods 121
    5.3.4 Deep Hashing Methods 124
    5.4 Evaluation Benchmarks 131
    5.4.1 Datasets 131
    5.4.2 Published Experimental Results 132
    5.5 Discussion 135
    5.5.1 Qualitative Comparison 135
    5.5.2 Possible Development Trends 137
    5.6 The Proposed MDCH 137
    5.6.1 Notations 138
    5.6.2  Problem Definition 139
    5.6.3 Hashing Code Learning 139
    5.6.4 Optimization 140
    5.6.5 Out-of-Sample Extension 142
    5.7 Validation for the Proposed MDCH 143
    5.7.1 Datasets 143
    5.7.2 Evaluation and Baselines 144
    5.7.3 Implementation Details 144
    5.7.4 Performance 145
    5.8 Conclusions 147
    5.9 Appendix 147
    References 148
    Chapter 6 Deep Cross-modal Hashing 155
    6.1 Introduction 155
    6.2 Related Work 156
    6.3  The Proposed Approach SDCH 158
    6.3.1 Notation 159
    6.3.2 Problem Definition 160
    6.3.3 Features Learning Part 161
    6.3.4 Hash Codes Learning Part 162
    6.3.5 Optimization 164
    6.4 Validation for the Proposed SDCH 166
    6.4.1 Datasets 166
    6.4.2 Evaluation and Baseline 166
    6.4.3 Performance 167
    6.4.4 Ablation Extents of SDCH 169
    6.5 Proof of the First Item in Eq.(6.3) 171
    6.6 Proof of the Second Item in Eq.(6.3) 172
    6.7 Proof of the Second Item in Eq.(6.10) 174
    6.8 Hybrid Representation Learning for Cross-modal Retrieval 175
    6.8.1 Modality-friendly and Modality-mutual Representation Learning 176
    6.8.2 Hybrid Representation Learning with a Two-level Network 177
    6.8.3 Hybrid Representation Correlation Learning 178
    6.9 Validation for the Method Based on HRL 178
    6.9.1 Experimental Setup 178
    6.9.2 Details of the HRL Method 180
    6.9.3 Evaluation Metrics 181
    6.9.4 Comparison with State-of-the-art Methods 182
    6.9.5 Experimental Results 183
    6.9.6 Baseline Experiments 188
    6.10 Conclusions 191
    References 191
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证