0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 电气工程 > 原位合成铝基复合材料(英文版)

相同语种的商品

浏览历史

原位合成铝基复合材料(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
原位合成铝基复合材料(英文版)
  • 书号:9787030710611
    作者:赵玉涛
  • 外文书名:
  • 装帧:圆脊精装
    开本:16
  • 页数:284
    字数:400000
    语种:en
  • 出版社:科学出版社
    出版时间:2022-08-01
  • 所属分类:
  • 定价: ¥199.00元
    售价: ¥157.21元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

近年来,随着能源环境问题日益凸显和轻量化设计制造的需求日益迫切,航空航天、轨道交通、节能汽车等高技术领域对原位铝基复合材料的需求潜力巨大,且对其综合性能的要求也越来越高。本书较系统、详细地介绍了原位铝基复合材料的体系设计、材料开发、制备技术、凝固组织、塑变加工及性能。全书共九章,主要内容包括:原位反应体系的设计与开发、电磁法合成原位铝基复合材料、高能超声法合成原位铝基复合材料、声磁耦合法合成原位铝基复合材料、原位铝基复合材料的凝固组织及界面结构、塑变加工对原位铝基复合材料组织的影响、原位铝基复合材料的力学性能、原位铝基复合材料的磨损性能。内容丰富、新颖,具有系统性和前瞻性,反映了作者团队二十余年来在原位铝基复合材料领域的科研成果。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Perface
    Chapter 1 Introduction 1
    1.1 The development history of metal matrix composites 1
    1.2 In-situ reaction synthesis technology 2
    1.2.1 Self-propagating high-temperature synthesis (SHS) method 2
    1.2.2 Exothermic dispersion (XDTM) method 3
    1.2.3 Contact reaction (CR) method 4
    1.2.4 Vapor liquid synthesis (VLS) method 5
    1.2.5 Lanxide method 6
    1.2.6 Mixed salt reaction (LSM) method 7
    1.2.7 Direct melt reaction (DMR) method 8
    1.2.8 Other methods 9
    1.3 Current status of in-situ aluminum matrix composites 10
    1.3.1 Design and simulation of in-situ aluminum matrix composites 10
    1.3.2 Preparation and forming technology of in-situ aluminum matrix composites 11
    1.3.3 Interface, microstructure, and performance control of in-situ aluminum matrix composites 13
    1.3.4 Service behavior and damage failure mechanisms of in-situ aluminum matrix composites in simulated environment 14
    References 15
    Chapter 2 Design and development of in-situ reaction systems 18
    2.1 Thermodynamics and kinetics of reaction systems 19
    2.2 Development of new reaction systems for in-situ aluminum matrix composites 20
    2.2.1 Al-Zr-O system development 22
    2.2.2 Al-Zr-B system development 30
    2.2.3 Al-Zr-B-O system development 33
    References 40
    Chapter 3 Synthesis of in-situ aluminum matrix composites by electromagnetic method 42
    3.1 Effect of electromagnetic field on melt and chemical reaction 42
    3.1.1 Distribution of B and F 42
    3.1.2 Temperature distribution in the electromagnetic field 46
    3.1.3 Effect of electromagnetic field on the melt 47
    3.1.4 Effect of electromagnetic field on chemical reactions 49
    3.2 Law of electromagnetic synthesis of aluminum matrix composites 51
    3.2.1 Effect of magnetic induction intensity 52
    3.2.2 Effect of processing time of magnetic field 53
    3.2.3 Effect of additive amount of reactants 55
    3.2.4 Effect of initial reaction temperature 57
    3.3 Mechanism of electromagnetic synthesis of composites 57
    3.3.1 The condition under which the reactants enter the melt 58
    3.3.2 Thermodynamic conditions for the electromagnetic synthesis of composites 61
    3.3.3 Kinetic conditions for the electromagnetic synthesis of composites 67
    References 73
    Chapter 4 High-energy ultrasonic synthesis of in-situ aluminum matrix composites 75
    4.1 Effect of high-energy ultrasound on metal melt and reactions 75
    4.1.1 Application of ultrasonic chemistry in the field of metal matrix composites 75
    4.1.2 Ultrasonic generator 76
    4.1.3 Effect of high-energy ultrasound on the microstructure of 2024Al composite 77
    4.2 The principle of high-energy ultrasonic synthesis of aluminum matrix composites 80
    4.2.1 Effect of high-energy ultrasound on A356 alloy  80
    4.2.2 Effect of high-energy ultrasound on Al-Zr(CO3)2 synthetic composite material 82
    4.2.3 Effect of high-energy ultrasound on composite material synthesized from A356-(K2ZrF6+KBF4) system 84
    4.2.4 Effect of high-energy ultrasound on composite material synthesized from A356-Ce2(CO3)3 system 87
    4.2.5 Effect of high-energy ultrasound on composite material synthesized from A356-K2ZrF6-KBF4-Na2B4O7 system 89
    4.2.6 Effect of high-energy ultrasound on composite material synthesized from 6063Al-Al2(SO4)3 system 92
    4.2.7 Effect of high-energy ultrasonic on composite material synthesized from 7055Al-(Al-3B) alloy-Ti system 98
    4.3 Mechanism of in-situ aluminum matrix composites synthesis under high-energy ultrasound 100
    4.3.1 The characteristics and principle of ultrasound 100
    4.3.2 Action mechanism of high-energy ultrasound during in-situ melt reaction 102
    References 107
    Chapter 5 Synthesis of in-situ aluminum matrix composites by acoustomagnetic coupling field 109
    5.1 Application of acoustomagnetic coupling method on metal melt and reaction 109
    5.1.1 Influence of acoustomagnetic field on metal melt and reactions 109
    5.1.2 Application of acoustomagnetic coupling field in preparation of alloys and composite materials 110
    5.2 The principle of synthesis of in-situ aluminum matrix composites by acoustomagnetic coupling field 111
    5.2.1 Reactive synthesis of Al3Ti/6070Al composites under acoustomagnetic coupling field 111
    5.2.2 Reaction synthesis of TiB2/7055Al composites under acoustomagnetic coupling field 115
    5.2.3 (Al2O3+ZrB2)/A356 composite prepared by acoustomagnetic coupling field 118
    5.3 Mechanism of acoustomagnetic coupled synthesis of aluminum matrix composites 125
    5.3.1 Flow of molten aluminum in ultrasonic field 125
    5.3.2 Flow field analysis in electromagnetic stirring process 130
    5.3.3 Analysis of the coupling effect of ultrasonic field and magnetic field 132
    References 137
    Chapter 6 Interface structure of matrix/in-situ reinforcement 139
    6.1 Morphology and growth mechanism of in-situ Al3Zr  139
    6.1.1 TEM morphology and crystal structure of in-situ Al3Zr 139
    6.1.2 Formation and growth mechanism of in-situ Al3Zr phase 141
    6.2 Morphology and formation mechanism of in-situ Al2O3 146
    6.2.1 Classification and crystalline structure of Al2O3 146
    6.2.2 Morphology and growth mechanism of Al2O3 reinforcement particles 146
    6.2.3 Dislocation at the particle/matrix interface 150
    6.2.4 Generation mechanism of dislocation 151
    6.3 Interface structure of in-situ (Al3Zr+Al2O3)/A356 composites 152
    6.3.1 Interfacial structure of Al3Zr/Al and Al2O3/Al  153
    6.3.2 Orientation relationship of Al3Zr/Al interface and atomic arrangement 155
    6.3.3 The interfacial structure of α-Al2O3/Si 155
    6.4 Distribution of dislocations and micro-hardness near the interface 158
    6.4.1 Dislocations at particle/matrix interface 158
    6.4.2 Micro-hardness of particle/matrix interface 159
    References 160
    Chapter 7 Mechanical properties of in-situ aluminum matrix composites 162
    7.1 Mechanical properties of in-situ aluminum matrix composites at room temperature 162
    7.1.1 Mechanical properties of aluminum matrix composites synthesized under pulsed magnetic field 162
    7.1.2 Mechanical properties of aluminum matrix composites synthesized under ultrasonic field 164
    7.1.3 Mechanical properties of aluminum matrix composites synthesized under ultrasonic-magnetic coupling field 165
    7.1.4 Mechanical properties of in-situ aluminum matrix nanocomposites 168
    7.2 High-temperature mechanical properties of in-situ aluminum matrix composites 170
    7.2.1 High-temperature tensile properties 170
    7.2.2 High-temperature creep properties 176
    7.3 Tensile failure behavior of in-situ aluminum matrix composites 183
    7.3.1 In-situ tensile 183
    7.3.2 Strengthening mechanisms 186
    References 193
    Chapter 8 Plastic forming of in-situ aluminum matrix composites 195
    8.1 Hot extrusion of in-situ aluminum matrix composites 195
    8.1.1 The effect of hot extrusion on the microstructure of Al2O3p/6063Al composites 195
    8.1.2 The effect of hot extrusion on the microstructure of ZrB2/6063Al composites 197
    8.1.3 The effect of hot extrusion on the microstructure of ZrB2/2024Al composites 198
    8.2 Forging and rolling of in-situ aluminum matrix composites 199
    8.2.1 The influence of forging and rolling on the microstructure of Al2O3p/6063Al composites 199
    8.2.2 The effect of forging on the microstructure of Al-Zr-B composites 202
    8.2.3 The effect of rolling on the microstructure of Al-Zr-B composites 206
    8.2.4 The influence of forging and rolling on the microstructure of Al-Ti-B composites 210
    8.2.5 The effect of forging on the microstructure of ZrB2/2024Al composites 215
    8.2.6 Mechanism and plastic deformation model of forging on in-situ composites 218
    8.3 Friction stir processing of in-situ aluminum matrix composites 220
    8.3.1 The influence of friction stir processing on ZrB2/2024Al composites 220
    8.3.2 The influence of friction stir processing on ZrB2/6063Al composites 224
    8.3.3 The effect of friction stir processing on Al3Zr/6063Al composites 229
    8.3.4 The effect of friction stir processing on Al3Ti/2024Al composites 233
    References 237
    Chapter 9 Wear properties of in-situ aluminum matrix composites 239
    9.1 Wear performance of in-situ aluminum matrix composites at room temperature 239
    9.1.1 Wear performance of hyper-eutectic Al-Si alloy matrix composites 239
    9.1.2 Friction and wear performance of ZL101A aluminum matrix composites 247
    9.2 Wear performance of in-situ aluminum matrix composites at high temperature 265
    9.2.1 Test conditions of high-temperature friction and wear 265
    9.2.2 High-temperature friction and wear performance of high silicon aluminum alloy and its composites 266
    9.3 Wear mechanism of in-situ aluminum matrix composites 272
    9.3.1 Analysis of the worn surface morphology of composite 272
    9.3.2 Analysis of dry sliding wear mechanism of composites 280
    References 283
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证