0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 能源与动力工程 > 生物质能原理与技术П(英文版)

相同语种的商品

浏览历史

生物质能原理与技术П(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
生物质能原理与技术П(英文版)
  • 书号:9787030564818
    作者:袁振宏
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥188.00元
    售价: ¥148.52元
  • 图书介质:
    纸质书

  • 购买数量: 件  商品库存: 7
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Yu Zhang, Jingliang Xu, Yanlinglin, Xinshu Zhuang, Hai Zhao, Yunyun Liu, Qiang Yu,Guixiong Zhou, and Mingsong Xiao
    1 Biomass ethanol fueltechnology 1
    1.1 Characteristics and application of ethanol l
    1.1.1 Physicaland chemical properties of ethanol l
    1.1.2 Performance comparison of ethanol and gasoline/diesel 2
    1.2 Production theory of bioethanol 3
    1.2.1 The main methods of ethanol production 3
    1.2.1.1 Microbial fermentation 3
    1.2.1.2 Syngas to ethanol 4
    1.2.2 Biochemical process of ethanol fermentation 5
    1.2.2.1 Carbohyd rate degradation 5
    1.2.2.2 Glycolysis 7
    1.2.3 Ethanol fermentation microbiology 8
    1.2.3.1 Ethanol fermentation microbiology based on a sugar platform 9
    1.2.3.2 Pentose fermenting microbes 13
    1.2.4 Breeding of ethanol fermentation microorganisms 13
    1.2.4.1 High ethanol tolerant strains 14
    1.2.4.2 High temperature resistant strains 15
    1.2.4.3 Pentose fermentation strains 16
    1.2.4.4 Saccharification function strains 16
    1.2.4.5 Engineered bacteria for consolidated bioprocessing 17
    1.2.4.6 The breeding of syngas fermentation microorganisms 17
    1.3 Ethanol production from starch feedstocks 18
    1.3.1 Crushing 18
    1.3.2 Steaming and gelatinization 19
    1.3.3 Saccharification 20
    1.3.3.1 Separate hydrolysis and fermentation process 20
    1.3.3.2 Simultaneous saccharification and fermentation process 20
    1.3.3.3 Partial simultaneous saccharification and fermentation process 21
    1.3.3.4 Ethanol Fermentation 21
    1.3.3.5 Ethanol extraction and purification 24
    1.3.3.6 Examples of industrial production 26
    1.4 Ethanol production from sugar feedstocks 26
    1.4.1 Technical process of ethanol production from sugar feedstocks 27
    1.4.1.1 Technological requirements for processing molasses feedstock 27
    1.4.1.2 Devices for the dilution of molasses 29
    1.4.1.3 The treatment process of molasses 30
    1.4.1.4 Acidification, ste rilizatio n, cIa rificatio n, and additio n of n utrient saIts to molasses 30
    1.4.2 Ethanol production from sweet sorghum stalk 33
    1.4.2.1 Solidstate fermentation process 33
    1.4.2.2 Liquid fermentation process 35
    1.4.3 Bioethanol production cases from sweet sorghum 36
    1.4.3.1 Continuous solidstate fermentation process 36
    1.4.3.2 Raw material pretreatment 36
    1.4.3.3 Yeast activation 38
    1.4.3.4 Joint blender mixer 38
    1.4.3.5 Fermentation 39
    1.5 Ethanol production from cellulosic materials 41
    1.5.1 Pretreatments 41
    1.5.1.1 Dilute acid pretreatment 41
    1.5.1.2 Liquid hot water pretreatment 44
    1.5.1.3 Steam explosion pretreatment 45
    1.5.2 Enzymatic hyd rolysis and ethanol fermentation of cellulosic materials 45
    1.5.2.1 Types of cellulase and their structures 45
    1.5.2.2 The hydrolysis mechanism of cellulase 46
    1.5.2.3 Factors affecting enzymatic hydrolysis 48
    1.5.2.4 Ethanol fermentation 49
    1.5.3 A case of cellulosic ethanol production 50
    1.6 Analysis of the economics of ethanol fuel production 51
    1.6.1 Analysis of the economics of ethanol fuel production using starch raw material 52
    1.6.2 Analysis ofthe economics of ethanol fuelproduction using sugar raw material 57
    1.6.3 Analysis of the economics of ethanol fuel production using cellulose raw material 60
    1.6.3.1 Simultaneous saccharification and cofermentation 61
    1.6.3.2 Twostage dilute acid hydrolysis process 64
    1.7 Environmentalimpacts of fuel ethanol production and control approaches 67
    1.7.1 Sources of pollutants during ethanol production 67
    1.7.2 Waste treatment methods 68
    1.7.2.1 The production of feed 69
    1.7.2.2 The production of feed yeast 69
    1.7.2.3 Anaerobic treatment 70
    1.7.2.4 Aerobic treatment 70
    1.7.2.5 Dilution agricultural irrigation method 70
    1.7.2.6 Concentration 71
    1.7.2.7 Combustion 71
    1.7.2.8 Comprehensive utilization 72
    1.7.2.9 Fine Chemicals 72
    1.7.3 Approaches to pollutant control 73
    1.8 The general situation of fuel ethanol prepared using biomass both at national and international Ievels 77
    1.8.1 Research and development of fuel ethanol 77
    1.8.2 Situation ofthe fuel ethanol industry in China 79
    1.8.2.1 The development of technologies to produce nongrain starch/sugar ethanol 80
    1.8.2.2 The development of cellulosic ethanol production technology 81
    1.8.3 Prospects for the fuel ethanolindustry in China 85
    1.8.3.1 Developmental trend 85
    1.8.3.2 Development objectives 86
    Weiming Yi, Xifeng Zhu, and Wei Qi
    2 Technologies of biomass pyrolysis 87
    2.1 Principles and technology of biomass fast pyrolysis 87
    2.1.1 0verview of biomass fast pyrolysis 87
    2.1.2 Characteristics of biomass fast pyrolysis 90
    2.1.2.1 Preparation of biomass powder 92
    2.1.2.2 Temperature control oflaminar flow furnace 92
    2.1.2.3 Biomass flash volatilization experiments and data processing 94
    2.1.3 Application example of the biomass pyrolysis technology 98
    2.1.3.1 Pretreatment device for feedstock drying 100
    2.1.3.2 Twostage screw feed device 101
    2.1.3.3 Fluidizedbed pyrolysis reactor 102
    2.1.3.4 Cyclone separator 103
    2.1.3.5 Condensing system 104
    2.2 Upgrading and applications of biooil 105
    2.2.1 Physical and chemical properties of biooil 105
    2.2.1.1 Ultimate composition of biooil105
    2.2.1.2 Component analysis of biooil 106
    2.2.1.3 Physical and chemical properties of biooil 108
    2.2.2 Biooil upgrading with addition of hydrogen 112
    2.2.2.1 Sulfided CoMo and NiMo catalysts 113
    2.2.2.2 Noble metal catalyst for catalytic hyd rogenation 114
    2.2.2.3 Twostage catalytic hydrogenation 114
    2.2.2.4 0nIine catalytic hydrogenation 115
    2.2.2.5 Catalytic hydrogenation of biooil in situ 116
    2.2.2.6 Upgrading biooil by homogeneous catalysis with metal complexes 116
    2.2.2.7 Catalytic hydrogenation of light fraction of biooil 118
    2.2.3 Biooil upgrading with catalytic cracking 118
    2.2.3.1 Catalyst type 119
    2.2.3.2 Catalytic reaction co n ditions 120
    2.2.3.3 Catalytic mechanism 121
    2.2.3.4 Catalyst deactivation mechanism 123
    2.2.4 Biooil steam reforming for hydrogen production 125
    2.2.4.1 Catalyst selection 126
    2.2.4.2 Preparation of catalysts 127
    2.2.4.3 Characterization of catalysts 128
    2.2.5 Biooil combustion technology 129
    2.2.5.1 Combustion characteristics of biooil129
    2.2.5.2 Spray characteristics of biooil 131
    2.2.5.3 Biooil atomization combustion system 134
    2.2.6 Demo applications of biooil 137
    2.2.6.1 Design of the fuel supply system 137
    2.2.6.2 Design of gas supply system 138
    2.2.6.3 Design of the atomizing nozzle 139
    2.2.6.4 Design of the biooil combustor 140
    2.2.6.5 Design of flue gas emission system 141
    2.2.6.6 Design of the test monitoring system 141
    2.2.6.7 The results of biooil spray combustion 141
    2.3 Carbonization of biomass 142
    2.3.1 Biomass carbonization technology 142
    2.3.1.1 Principle and characteristics of carbonization 142
    2.3.1.2 Carbonization products 143
    2.3.1.3 Factors affecting the carbonization process 143
    2.3.1.4 Types of carbonization technology 144
    2.3.2 The properties and applications of biochar 147
    2.3.2.1 Feedsto c ks of cha rcoal 148
    2.3.2.2 Types of charcoal148
    2.3.2.3 Properties of the charcoal 149
    2.3.2.4 Applications of cha rcoal 152
    2.3.3 The applications of biomass dry distillation gas 154
    2.3.3.1 Jiaozuo biomass carbon gas oil cogeneration system 155
    2.3.3.2 Dalian biomass energy engineering 155
    2.3.3.3 Liaoning biomass distilled gas production device 157
    2.3.4 Case study of biomass carbonization 158
    2.3.4.1 Estimated sales (ES) 164
    2.3.4.2 Unit fixed costs (UFC) 164
    2.3.4.3 Unit variable costs (UVC) 165
    2.3.4.4 Unit sales tax and surcharges (USTAS) 166
    2.3.4.5 Price of main feedstock materials on breakeven point (POMF on BEP) 166
    Changfeng Yan, Quanguo Zhang, and Shunni Zhu
    3 Technologies for biomassbased hydrogen production 169
    3.1 Hydrogen energy 169
    3.1.1 Introduction 169
    3.1.2 Properties of hydrogen 169
    3.1.2.1 Physical properties of hydrogen 169
    3.1.2.2 Chemical properties of hyd rogen 170
    3.1.2.3 Characteristics of hydrogen energy 171
    3.1.3 Hydrogen production from biomass 172
    3.1.4 Development and utilization of hydrogen 173
    3.2 Thermochemical routes for hydrogen production from biomass 174
    3.2.1 Introduction 174
    3.2.2 Fast pyrolysis of biomass to hydrogen 175
    3.2.3 Biomass gasification to hydrogen 176
    3.2.3.1 Introduction 176
    3.2.3.2 Biomass gasification reactor 177
    3.2.4 Hydrogen production from biomass gasification in supercritical water 178
    3.2.4.1 Reaction mechanism 179
    3.2.4.2 Reactors for biomass gasification in supercritical water 181
    3.2.5 Hydrogen production from biomass gasification via solid heat carrier 182
    3.2.5.1 Hydrogen production from biomass gasification with chemical looping process of carbonation/calcination cycle 184
    3.2.5.2 Chemical looping hyd rogen production from biomass 187
    3.2.6 Hydrogen cleanup and purification 188
    3.2.6.1 Catalytic tar removal for hyd rogen purification 188
    3.2.6.2 CO removal for hydrogen purification 189
    3.3 Hydrogen production from biomass derivatives 194
    3.3.1 Hydrogen production from biooil 194
    3.3.1.1 Properties of biooil 194
    3.3.1.2 Catalysts for hydrogen production via biooil steam reforming 194
    3.3.1.3 Biooil partial oxidation for hydrogen production 198
    3.3.1.4 Autothermal reforming for hydrogen production 198
    3.3.1.5 Reactors for hydrogen production from biooil reforming 199
    3.3.2 Hydrogen production from methanol 199
    3.3.2.1 Mechanism 199
    3.3.2.2 Hydrogen production methods 200
    3.3.2.3 Catalyst for methanol steam reforming 201
    3.3.2.4 Methanol steam reforming reactor 202
    3.3.2.5 Demonstration of the system 203
    3.3.2.6 Numerical simulation 204
    3.3.3 Hydrogen production from ethanol 205
    3.3.3.1 Technologies of hydrogen production from ethanol 205
    3.3.3.2 Catalysts 210
    3.3.3.3 Catalyst support 211
    3.3.3.4 Catalyst promoter 212
    3.3.4 Hydrogen production from dimethyl ether 212
    3.3.4.1 DME reforming for hyd rogen production 213
    3.3.4.2 Catalysts for hydrogen production from steam reforming 214
    3.3.4.3 Reactors and their performance for DME steam reforming 216
    3.3.4.4 Numerical simulation 216
    3.4 Biological hydrogen production 217
    3.4.1 Introduction 217
    3.4.2 Direct biophotolysis 218
    3.4.3 Indirect biophotolysis 220
    3.4.4 Photofermentation 222
    3.4.5 Dark fermentation 224
    3.4.5.1 Dark fermentative microorganisms 225
    3.4.5.2 Mechanism of dark fermentation and influencing factors 227
    3.4.6 Biological watergas shift reaction 231
    Tiejun Wang, Longlong Ma, Yujing Weng,Junlin Tu, Mingyue Ding, Huijuan Xu, and Qi Zhang
    4 Biomass synthetic fueltechnology 233
    4.1 Catalytic synthesis of liquid fuel with synthesis gas 233
    4.1.1 The basic principle of liquid fuel synthesis from syngas 235
    4.1.2 Methanol synthesis from syngas 236
    4.1.2.1 Methanol synthesis process 236
    4.1.2.2 The reaction mechanism of methanol synthesis 238
    4.1.2.3 Research status of catalysts for methanol synthesis 240
    4.1.2.4 Demonstration and application of biomass gasification methanol synthesis 241
    4.1.3 Catalytic conversion of syngas to dimethyl ether 243
    4.1.3.1 Physical properties 244
    4.1.3.2 Production technologies for DME synthesis via syngas 245
    4.1.4 Catalytic conversion of syngas to mixed alcohols 249
    4.1.4.1 Thermodynamics of mixed alcohols synthesis from syngas 249
    4.1.4.2 Catalysts used for mixed alcohol synthesis 250
    4.1.4.3 Reaction mechanism of mixed alcohol synthesis 252
    4.1.4.4 Typical processes of mixed alcohol synthesis 254
    4.2 Biofuels synthesis via aqueous phase catalytic conversion of biomass 258
    4.2.1 Mechanism of aqueous phase catalytic conversion of biomass 260
    4.2.1.1 Hydrogenation of sugar into polyol 261
    4.2.1.2 Alkane production via aqueousphase catalytic conversion of biomass 264
    4.2.1.3 Reactor design for aqueous conversion of sorbitolinto alkane 271
    4.2.2 Alkane production by aqueousphase catalytic conversion of biomass 272
    4.2.3 C8C15 alkane production via aqueousphase catalytic conversion of biomass 275
    4.2.3.1 Aldol condensation of furfural via acetone 278
    4.2.3.2 Jet fuel production from aldol condensation products 279
    4.2.3.3 Catalysts applied in aldol condensation of furfural with acetone 280
    4.2.4 0xygenated Iiquid fuel production via aqueousphase catalytic conversion of biomass 280
    4.2.4.1 Advantages of higher chain alcohols 280
    4.2.4.2 Synthesis of higher chain alcohols 281
    4.2.5 Diesel synthesis from syngas 282
    4.2.6 Gasoline synthesis via methanol from syngas 283
    4.3 Biofuel production via polymerization of low carbon number olefins 286
    4.3.1 Mechanism of polymerization of low carbon number olefins 286
    4.3.2 Gasoline production via polymerization of low carbon number olefins 288
    4.3.3 Jet fuel production via polymerization of low carbon number olefins 289
    Changzhu Li, Wen Luo, Zhihong Xiao, Lingmei Yang, Aihua Zhang, and Pengmei Lv
    5 Technologies in vegetable oiland biodiesel 291
    5.1 Vegetable oils fuel 291
    5.1.1 Physicochemical properties of vegetable oils 291
    5.1.1.1 Physical and chemical properties of vegetable oils 292
    5.1.1.2 Characteristics of vegetable oil fuel294
    5.1.2 The use of vegetable oils as diesel fuel296
    5.1.2.1 Dilution of oils 297
    5.1.2.2 Microemulsion of oils 297
    5.1.3 Vegetable oil producing technology 298
    5.1.3.1 Basic principle and process of oil leaching method 298
    5.1.3.2 Basic principle of mechanical crushing method and process 299
    5.1.3.3 011 refining 299
    5.1.4 Examples of rapeseed oil fuel tests 302
    5.1.4.1 Germanmade vegetable oil engine 302
    5.1.4.2 Contrast test of diesel and rapeseed 011 302
    5.1.5 Example of cottonseed oildiesel blend fuel test 303
    5.1.5.1 Heating to reduce the viscosity of cottonseed oil 303
    5.1.5.2 The ratio of cottonseed oil to diesel 304
    5.1.5.3 Appraisal of cottonseed oildiesel blend fuel 305
    5.2 Biodiesel technology 306
    5.2.1 Principle of biodiesel production 306
    5.2.1.1 Esterification 306
    5.2.1.2 Transesterification 307
    5.2.2 Technologies for biodiesel production 309
    5.2.2.1 Enzymatic transesterification methods 309
    5.2.2.2 Chemical methods 309
    5.2.2.3 Supercritical methanol method 310
    5.2.3 Processing and design for biodiesel production 311
    5.2.3.1 Process flow 311
    5.2.3.2 Catalysts 313
    5.2.3.3 Reactor 317
    5.2.3.4 Separation and purification of crude biodiesel 321
    5.2.4 Case studies for biodiesel engineering 323
    5.2.4.1 Processing technological analysis 323
    5.2.4.2 Economic analysis 323
    5.2.5 Global development of biodiesel 326
    5.2.5.1 China 326
    5.2.5.2 United States 327
    5.2.5.3 European union (EU) 327
    5.2.5.4 0ther countries 328
    5.2.6 Environmentalimpact 329
    Dong Li, Xiaofeng Liu, Feng Zhen, and Haibin Li
    6 Technologies of municipal solid waste treatment 331
    6.1 Characteristics of municipal solid waste 331
    6.1.1 Characteristics of municipal solid waste outside China 331
    6.1.2 Characteristics of domestic MSW 331
    6.1.3 Curre nt situation of collectio n, tra n spo rtation, and disposal of MSW in China 334
    6.1.3.1 Quantity of MSW collected and transported increases year by year 334
    6.1.3.2 Largescale processing: An increase in processing capacity and decrease in the number of facilities 336
    6.1.3.3 LandfillIed, rapid development of incineration and a decrease in the composting ratio 337
    6.2 MSW treatment and application technology 339
    6.2.1 Sanitary landfill 339
    6.2.1.1 Reaction mechanisms in landfill process 339
    6.2.1.2 Seepage prevention at a landfill site 340
    6.2.1.3 Leachate treatment 342
    6.2.1.4 Gathering and applications oflandfill gas 344
    6.2.1.5 Closure of a landfill site 345
    6.2.2 Incineration for power generation 345
    6.2.2.1 Waste incineration process 345
    6.2.2.2 Waste incinerator 346
    6.2.2.3 Process flow of waste incineration 351
    6.2.3 Aerobic compost 352
    6.2.3.1 0perating principle 353
    6.2.3.2 Raw materials and technological parameters 355
    6.2.3.3 Composting process system 356
    6.2.4 Anaerobic digestion 358
    6.2.4.1 System composition 358
    6.2.4.2 Anaerobic digestion of organic waste 359
    6.3 Cases of urban domestic waste treatment 364
    6.3.1 Liulitun Waste Sanitary Landfill, Beijing 364
    6.3.1.1 General introduction to the landfill 364
    6.3.1.2 Engineering contents of the landfill 365
    6.3.1.3 Leachate treatment 367
    6.3.2 Likeng waste incineration power plant, Guangzhou 369
    6.3.2.1 General369
    6.3.2.2 Process flow and main equipment 370
    6.3.3 Nangong domestic waste composting plant, Beijing 372
    6.3.3.1 General 372
    6.3.3.2 Process description 372
    6.3.3.3 Costbenefit analysis 373
    6.3.4 Heishizi anaerobic digestion plant for kitchen waste, Chongqing 373
    6.3.4.1 General 373
    6.3.4.2 Process system 374
    6.3.4.3 Product scheme 375
    6.4 0utlook for MSW 375
    6.4.1 Separate collection of MSW 375
    6.4.1.1 Classification and collection of MSW outside China 375
    6.4.1.2 Classification of China's advanced cities and collection of MSW 377
    6.4.2 Mechanical sorting technology of mixed MSW 379
    6.4.2.1 Actuality of MSW sorting technology 379
    6.4.2.2 Main equipment for sorting MSW 379
    6.4.3 Mechanicalbiological treatment of MSW 384
    Xiaoying Kong, Gaixiu Yang, Ying Li, Dongmei Sun, and Huan Deng
    7 Microbialfuelcells 387
    7.1 The basics of microbial fuelcells 387
    7.1.1 The historical development of microbial fuel cells 387
    7.1.2 The technological development of microbial fuel cell 389
    7.1.3 The conductive mechanism of the cell 391
    7.1.3.1 The electrolytic cell 391
    7.1.3.2 0riginal battery 391
    7.1.4 The working principle of the MFC 391
    7.1.5 The mechanism of electron transfer of microbially produced electricity 393
    7.1.5.1 Redox mediator transfer 394
    7.1.5.2 Direct electron transfer 394
    7.1.5.3 Nanowire transfer 395
    7.2 Microbial fuel cell technology 395
    7.2.1 Electrogenesis microorganism 395
    7.2.1.1 Electrogenesis bacteria 396
    7.2.1.2 Fungi 398
    7.2.1.3 Chlamydomonas reinhardtii 399
    7.2.2 MFC substrate 399
    7.2.2.1 Small organic molecules 399
    7.2.2.2 Alcohols 400
    7.2.2.3 Sugar 400
    7.2.2.4 0rganic wastewater 401
    7.2.3 MFC materials 401
    7.2.3.1 Anode materials 402
    7.2.3.2 Cathode Materials 403
    7.2.3.3 Membrane 404
    7.2.4 MFC configurations 404
    7.2.4.1 Twochambered MFC 404
    7.2.4.2 Singlechambered MFC 405
    7.2.4.3 MFC batteries 406
    7.3 Characterization techniques of MFCs 406
    7.3.1 Electrochemical techniques 406
    7.3.1.1 Cyclic voltammetry (CV) 407
    7.3.1.2 Chronoamperometry (CA) 409
    7.3.1.3 Chronopotentiometry (CP) 410
    7.3.1.4 Polarization curves (PCs) 410
    7.3.1.5 Power curves 411
    7.3.2 Coulombic efficiency 412
    7.3.3 Resistance 412
    7.3.4 Degradation efficiency 414
    7.3.5 Energy efficiency 414
    7.3.6 0ther characterization techniques 415
    7.4 The application and functional extension of MFCs 415
    7.4.1 Electrogenesis 416
    7.4.2 Pollutants remediation and waste reclamation 417
    7.4.2.1 Treatment of wastewater 417
    7.4.2.2 Recovery of solid organic waste 419
    7.4.2.3 Remediation of polluted soil 420
    7.4.3 Biosensors 420
    7.4.3.1 BOD Biosensors 422
    7.4.3.2 Toxicity detection biosensors 422
    7.4.3.3 Soil pollutant detection 422
    7.4.4 Desalinization 423
    7.4.5 Hydrogen production 426
    References 429
    Index 455
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证