0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 地球天文 > 地球物理学 > 地热学及其应用

相同语种的商品

浏览历史

地热学及其应用


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
地热学及其应用
  • 书号:9787030457349
    作者:汪集暘等
  • 外文书名:
  • 装帧:平装
    开本:16
  • 页数:
    字数:
    语种:zh-Hans
  • 出版社:
    出版时间:
  • 所属分类:
  • 定价: ¥1008.00元
    售价: ¥1008.00元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书是一部系统论述地热学理论及其实际应用的专著。全书分上、下两篇共11章,第1章全面介绍了地热学的学科定位与体系,回顾了其发展历程,展望了其未来趋势。第2章至第6章(上篇)是理论地热学部分,系统介绍地球内部热量的产生和传递、我国与全球大地热流分布、岩石圈热结构及其深部地球动力学含义等。第7章至第11章(下篇)是地热学应用部分,重点介绍地热学在地热资源开发利用、油气和天然气水合物资源勘探、矿山热害防治及全球变化研究等方面的应用。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    序一
    序二
    前言
    第1章 绪论1
    1.1地热学及其研究对象1
    1.2地热学研究方法2
    1.3地热学发展简史与酿进展3
    1.4地热学发展方向展望9
    1.5结语13
    参考文献15
    上篇基础篇
    第2章 地球内热与热传递19
    2.1地球内热的起源19
    2.1.1地球的重力位能转化热19
    2.1.2放射性同位素衰变产生的热21
    2.1.3地球内热的损耗24
    2.2地球内热的演化25
    2.2.1地球内部的温度分布26
    2.2.2地球内热演化的历史32
    2.2.3地幢对流与地幔热柱的热演化模型37
    2.3地球与类地行星内热的比较44
    2.3.1地球与类地行星内热演化参数与机制的比较44
    2.3.2地球与水星、月球内热演化的比较47
    2.3.3地球与金星内热演化的比较48
    2.3.4地球与火星内热演化的比较49
    2.4地球内部的热传递52
    2.4.1地球内部的热传导52
    2.4.2地球内部的热对流58
    2.4.3地球内部的热辐射60
    参考文献61
    第3章 中国陆地大地热流64
    3.1地温测量64
    3.1.1地壳表层温度分带65
    3.1.2稳态与非稳态钻井地温测量70
    3.1.3地温梯度78
    3.1.4钻井测温曲线的地质涵义79
    3.2岩石热物性83
    3.2.1岩石热导率83
    3.2.2热导率空间变化及其热效应88
    3.2.3比热和热扩散率89
    3.3大地热流91
    3.3.1热流值计算91
    3.3.2实测与估算热流值93
    3.3.3热流值校正94
    3.3.4热流数据质量分类99
    3.4中国大陆地区热流图99
    3.4.1热流数据汇编99
    3.4.2中国大陆地区热流图101
    3.4.3热流异常及其控制因素103
    3.5区域热流格局的形成机制113
    3.5.1热流-地貌高程-新生代火山活动113
    3.5.2热流-构造-热事件、造山作用年龄的关系115
    3.5.3热流分布格局的形成机制116
    参考文献120
    第4章 中国海域大地热流123
    4.1海底热流调查设备124
    4.1.1常规海底地热探针124
    4.1.2其他海底热流测量设备127
    4.2数据处理方法129
    4.2.1温度偏移校正130
    4.2.2数据解算方法131
    4.2.3地温梯度和热流计算134
    4.3海底沉积物热导率135
    4.3.1实验室热导率测量136
    4.3.2热导率温压校正139
    4.4海底热流影响因素与校正139
    4.4.1沉积作用139
    4.4.2海底水温周期性变化142
    4.5中国周边海域热流分布特征143
    4.5.1南海143
    4.5.2渤海148
    4.5.3黄海152
    4.5.4东海153
    4.5.5几点认识155
    参考文献156
    第5章 全球热流160
    5.1全球热流数据库与热流图160
    5.2大地热流与构造-热事件的关系166
    5.2.1构造热与热松弛时间167
    5.2.2典型构造事件的瞬时热效应168
    5.3热流与板块构造169
    5.3.1概述169
    5.3.2大陆热流170
    5.3.3大洋热流175
    5.4全球热量收支179
    5.4.1地球内热源的构成与分配179
    5.4.2地球热散失量的不对称性181
    参考文献182
    第6章 岩石圈热结构186
    6.1岩石生热率186
    6.2地震波速与岩石生热率189
    6.2.1地震波速与生热率的函数方程189
    6.2.2定量关系的质疑191
    6.3热流与生热率的线性经验关系194
    6.3.1线性经验关系的提出194
    6.3.2花岗岩体中的生热率分布研究195
    6.3.3地壳剖面生热率的研究196
    6.3.4热流与生热率线性关系的地球物理模拟200
    6.3.5中国东南地区热流和生热率的关系研究201
    6.3.6全球热流省资料统计分析202
    6.3.7热流与生热率线性关系探究205
    6.4中国大陆地区生热率研究现状和进展206
    6.4.1中国东南地区生热率的区域分布特征207
    6.4.2中国大陆科学钻探孔生热率的垂向分布特征209
    6.4.3苏鲁地壳的生热模型211
    6.4.4中国大陆地区地壳生热模型的对比213
    6.5岩石圈热结构214
    6.5.1岩石圈热结构分析214
    6.5.2中国岩石圈热结构分区217
    6.5.3岩石圈热结构的动力学意义219
    6.6热岩石圈厚度221
    6.6.1热岩石圈厚度的确定221
    6.6.2地震-热岩石圈厚度223
    6.6.3克拉通热岩石圈与地震岩石圈厚度的对比224
    6.7岩石圈热-流变结构与大陆动力学227
    6.7.1大陆岩石圈热-流变结构的时空特征227
    6.7.2岩石圈热-流变性质对地球动力学事件的制约230
    6.7.3大陆构造与岩石圈热-流变结构232
    6.8热与克拉通破坏235
    6.8.1放射性生热与克拉通热平衡236
    6.8.2地幔柱与克拉通热平衡236
    6.8.3板块俯冲与克拉通热平衡237
    6.8.4太平洋板块俯冲与华北克拉通破坏238
    参考文献241
    下篇应用篇
    第7章 地热系统与地热资源257
    7.1地热资源概述257
    7.2地热系统成因分析258
    7.2.1高温对流型地热系统——羊八井型262
    7.2.2中低温对流型地热系统——漳州型263
    7.2.3中低温对流传导型地热系统——雄县型266
    7.3地热系统探测与模拟方法268
    7.3.1土壤气体探测方法270
    7.3.2微动探测在地热勘查中的应用276
    7.3.3电磁法地热探测285
    7.4沉积盆舰热资源评价:以苏北盆地建湖隆起为例292
    7.4.1地热资源评价方法292
    7.4.2苏北盆地建湖隆起295
    7.5油区地热资源评价:以大庆油区为例333
    7.6我国大陆地区干热岩地热资源评价364
    参考文献372
    第8章 含油气盆地地热学377
    8.1地热与石油377
    8.2古地温计方法378
    8.2.1有机质古地温计379
    8.2.2低温热年代学古地温计383
    8.2.3其他方法396
    8.2.4古温标热历史恢复方法和原理406
    8.3地球动力学方法410
    8.3.1裂谷盆地(多期)拉张动力学模型411
    8.3.2沉积盆地岩石圈构造-热演化模拟的应变速率法416
    8.3.3前陆(挤压)盆地动力学模型422
    8.4盆地热历史与油气关系426
    8.4.1热史恢复实例426
    8.4.2烃源岩成熟度演化模拟431
    8.4.3烃源岩灶演化模拟433
    参考文献437
    第9章 地热与天然气水合物445
    9.1天然气水合物稳定带厚度的计算445
    9.1.1基本原理445
    9.1.2应用实例447
    9.2BSR热流及其与实测热流的对比458
    9.2.1BSR热流计算方法459
    9.2.2BSR热流与实测值的对比459
    9.3南海北部水合物前景的地热学预测467
    9.3.1甲烷通量与水合物生成带厚度467
    9.3.2对水合物前景的讨论469
    参考文献471
    第10章 矿山地热473
    10.1矿山热害与矿山地热学473
    10.2矿山地温场形成模式474
    10.2.1区域地热背景474
    10.2.2岩石热导率475
    10.2.3基底起伏变化478
    10.2.4地下水活动的影响482
    10.3矿山地温类型486
    10.3.1简要评述486
    10.3.2方案修订487
    10.4三河尖煤矿刘庄区地热模型研究489
    10.4.1矿山地热概念模型489
    10.4.2方法原理与流程498
    10.4.3勘探线13地温场模拟498
    10.5华北及全国赋煤区地热背景及娜地温预测502
    10.5.1华北矿区深部地温预测502
    10.5.2全国煤矿区地温概况512
    参考文献514
    第11章 地热与全球气候变化516
    11.1利用地温资料研究气候变化历史的原理与方法517
    11.1.1基本原理517
    11.1.2正演方法519
    11.1.3反演方法521
    11.1.4地热-古气候研究方法的特点522
    11.2典型实例分析523
    11.2.1美国阿拉斯加州523
    11.2.2四川攀西地区钻孔温度反演结果524
    11-2.3利用全球热流数据研究晚第四纪气候变化525
    11.3全球钻孔温度与气候变化历史数据库528
    11.3.1数据来源和分布528
    11.3.2百年趋势反演方法529
    11.3.3全球和大陆尺度结果分析530
    11.4陆地与大气热相互作用监测533
    11.4.1长期系统监测的重要性533
    11.4.2国际地温与气候变化监测站概况534
    11.4.3西安交通大学热环境与气象监测站536
    11.5从月球表面温度提取地球气候变化信息539
    11.5.1地球气候系统的辐射平衡539
    11.5.2阿波罗月表温度数据的实证540
    参考文献542
    索引547
    Contents
    Foreword One
    Foreword Two
    Preface
    Chapter 1 Introduction 1
    1.1Geothermics and its scope 1
    1.2Geothermal research methods 2
    1.3Brief history of geothermics and recentprogresses 3
    1.4Prospects of the future geothermics 9
    1.5Concluding remarks 13
    References 15
    Section One Fundamentals
    Chapter 2 The Earth’sInternalHeat and HeatTransfer 19
    2.1The Origin of the Earth’s internal heat 19
    2.1.1Heat converted from gravitational potential energy 19
    2.1.2Heat generated by the radioactive isotope decay 21
    2.1.3Sinks of the Earth’s internal heat 24
    2.2Evolution of the Earth’s internal heat 25
    2.2.1Temperature distribution in the interior of the Earth 26
    2.2.2Thermal history of the Earth’s interior 32
    2.2.3Thermal evolution model of Mantle convection and Mantle plume 37
    2.3Comparison of internal heat between the Earth and other terrestrial planets 44
    2.3.1Mechanismsofthethermalevolution of the Earth and terrestrialplanets 44
    2.3.2Comparisonofthethermalevolution of the Earth,Mercury and the Moon 47
    2.3.3Comparisonofthethermalevolution of the Earth and Venus 48
    2.3.4Comparisonofthethermalevolution of the Earth and Mars 49
    2.4Heat transfer in the Earth’s interior 52
    2.4.1Heat conduction 52
    2.4.2Heat convection 58
    2.4.3Heat radiation 60
    References 61
    Chapter 3 Terrestrial Heat Flow in the ContinentalAreaofChina 64
    3.1Subsurface temperature measurements 64
    3.1.1Temperature zoning at shallow depths 65
    3.1.2Equilibrium and non-equilirium temperature measurements in boreholes 70
    3.1.3Subsurface temperature gradient 78
    3.1.4Geological implications of borehole temperature logs 79
    3.2Thermal properties of rocks 83
    3.2.1Thermal conductivity 83
    3.2.2Spatial variation of thermal conductivity and its thermal effects 88
    3.2.3Specific heat and thermal diffusivity 89
    3.3Terrestrial heat flow 91
    3.3.1Calculation of heat flow 91
    3.3.2Measured and estimated heat flow 93
    3.3.3Correction of measured heat flow 94
    3.3.4Quality classification of heat flow data 99
    3.4Heat flow map of the continental area of China 99
    3.4.1Compilation of heat flow data 99
    3.4.2Heat flow map of the continental area of China 101
    3.4.3Heat flow anomalies and their control factors 103
    3.5Regional heat flow pattern and its tectonic applications 113
    3.5.1Heat flow-topography elevation-Cenozoic volcanism 113
    3.5.2Heat flow-tectono-thermal event and orogenic age 115
    3.5.3Regional pattern of heat flow and its deep geodynamicsorigin 116
    References 120
    Chapter 4 Heat Flow in the Adjacent Seas of China 123
    4.1Instrumentation of seafloor heat flow measurements 124
    4.1.1Traditional seafloor heat flow probes 124
    4.1.2Other instrumentation of seafloor heat flow measurement 127
    4.2Data processing 129
    4.2.1Correction for instrumental drift 130
    4.2.2Data reduction 131
    4.2.3Geothermal gradient and heat flow 134
    4.3Thermal conductivity of seafloor sediments 135
    4.3.1Laboratory measurement of thermal conductivity 136
    4.3.2Temperature and pressure corrections of thermal conductivity 139
    4.4Influence factors of seafloor heat flow and their corrections 139
    4.4.1Sedimentation effect 139
    4.4.2Periodic temperature variations of bottom water 142
    4.5Heat flow distribution features of the adjacent seasof China 143
    4.5.1TheSouth China Sea 143
    4.5.2TheBohai Sea 148
    4.5.3TheYellow Sea 152
    4.5.4TheEast China Sea 153
    4.5.5Remarks 155
    References 156
    Chapter 5 Global Heat Flow 160
    5.1Global heat flow database and heat flow pattern 160
    5.2Relationship between heat flow and tectono-thermal events 166
    5.2.1Tectonic heating and thermal relaxation 167
    5.2.2 Transient thermal effects of tectonic events 168
    5.3Global heat flow and plate tectonics 169
    5.3.1Overview 169
    5.3.2Continental heat flow 170
    5.3.3Marine heat flow 175
    5.4Global heat budget 179
    5.4.1Components and partition of the Earth,sinner heat sources 179
    5.4.2Asymmetrical distribution of terrestrial heat flux 181
    References 182
    Chapter 6 ThermalStructure of theLithosphere 186
    6.1Heat production 186
    6.2Seismic velocity and heat production 189
    6.2.1Equations of seismic velocity and heat production 189
    6.2.2Questions regarding the seismic velocity-heat production relationship 191
    6.3Empirical linear relationship between heat flow andheatproduction 194
    6.3.1Empirical linear relationship 194
    6.3.2Heat production in granite plutons 195
    6.3.3Heat production along selected crust profiles 196
    6.3.4Geophysical simulation on the linear relationship between heat flow and heat production 200
    6.3.5Case study of the relationship between heat flow and heat production in Southeast China 201
    6.3.6Statistical analysis of global heat flow provinces 202
    6.3.7Study on the relationship between heat flow and heat production 205
    6.4Advances in the heat production for the continentalareaof China 206
    6.4.1Heat production distribution in Southeast China 207
    6.4.2Variation of heat production rate in the Chinesecontinentalscientific drilling 209
    6.4.3Heat production model for the Sulu crust profile 211
    6.4.4Comparison of continental heat production models in China 213
    6.5Thermal structure of the lithosphere 214
    6.5.1Analysis of lithospheric thermal structures 214
    6.5.2Regional patterns of the lithospheric thermal structure in China 217
    6.5.3Geodynamical significances of lithospheric thermal structure 219
    6.6Thermal thickness of the lithosphere 221
    6.6.1Determination of thermal lithospheric thickness 221
    6.6.2Seismic-thermal lithosphere thickness 223
    6.6.3Comparison between thermal and seismic lithosphere thicknesses of a craton 224
    6.7Lithospheric thermo-rheological structure andcontinentaldynamics 227
    6.7.1Tempo-spatial pattern of continental lithospheric thermo-rheological structure 227
    6.7.2Constraints of lithospheric thermo-rheological structure on geodynamic processes 230
    6.7.3Continental tectonics and lithospheric thermo-rheological structure 232
    6.8Heating and craton destruction 235
    6.8.1Heat production and thermal equilibrium of a craton 236
    6.8.2Mantle plume and thermal equilibrium of a craton 236
    6.8.3Plate subduction and thermal equilibrium of a craton 237
    6.8.4Pacific plate subduction and the North China Craton destruction 238
    References 241
    Section Two Applications
    Chapter 7 Geothermal Systems and Geothermal Resources 257
    7.1Overview of geothermal resources 257
    7.2Genesis analyses of geothermal systems 258
    7.2.1High temperature convective system-Yangbajing geothermal field 262
    7.2.2Medium and low temperature convective system-Zhangzhou geothemal field 263
    7.2.3Medium and low temperature conductive-convective system-Xiongxian geothermal field 266
    7.3Exploration and simulation method of geothermal systems 268
    7.3.1Measurement and analysis of gases in soils 270
    7.3.2Use of micro-tremor in geothermal exploration 276
    7.3.3Use of electromagnetic methods in geothermal exploration 285
    7.4Geothermal resources in sedimentary basins:Acase studyof the Jianhu Uplift 292
    7.4.1 Methods of geothermal resources assessment 292
    7.4.2 The Jianhu Uplitt in the North Jiangsu Basin 295
    7.5Oil-heat co-production in oilfields:A case study of the Daqin Oilfield 333
    7.6Assessment of hot-dry-rock resources in the continental area of China 364
    References 372
    Chapter 8Geothermics in the Petroliferous Basins 377
    8.1Geothermal and petroleum 377
    8.2Paleothermal indicators 378
    8.2.1Paleothermal indicators of organic matters 379
    8.2.2Lower temperature thermochronology 383
    8.2.3Other paleothermal methods 396
    8.2.4Thermal history reconstruction by paleothermal indicators 406
    8.3Methods of geodynamics 410
    8.3.1Geodynamic model of multiple phase extensional basins 411
    8.3.2Strain rate method for the study of tectono-thermal evolutionof basins 416
    8.3.3Geodynamic model of foreland (extrusional) basins 422
    8.4Relationships between thermal history of sedimentary basinsandoil & gas 426
    8.4.1Case study of thermal history reconstruction 426
    8.4.2Modeling of hydrocarbon source rock maturation 431
    8.4.3Modeling of hydrocarbon kitchen evolution 433
    References 437
    Chapter 9Geothermal and Natural Gas Hydrate 445
    9.1Calculation of thickness of natural gas hydrate stability zone 445
    9.1.1Basic principles 445
    9.1.2Case study 447
    9.2Comparison between bottom simulating reflection (BSR) andobserved heat flow 458
    9.2.1Calculation of BSR heat flow 459
    9.2.2Comparison between BSR heat flow and observed heat flow 459
    9.3Geothermal prospecting of methane hydrate 467
    9.3.1Methane flux and the thickness of methane hydrate occurrencezone 467
    9.3.2Prospect of methane hydrate 469
    References 471
    Chapter 10 Geothermal HazardsinCoal Mines 473
    10.1Geothermal hazards and geothermal studies in coal mines 473
    10.2Subsurface temperature fields in coal mines 474
    10.2.1Regional geothermal background 474
    10.2.2Thermal conductivity of rocks 475
    10.2.3Relief of crystalline basement 478
    10.2.4Impact of groundwater flow 482
    10.3Classification of subsurface temperature fields in coal mines 486
    10.3.1Brief review of existing schemes 486
    10.3.2Revision of the existing scheme of classification 487
    10.4A case study of the Liuzhuang coal mine 489
    10.4.1Conceptual geothermal model 489
    10.4.2Methodologies and procedures 498
    10.4.3Subsurface temperature profile along the exploration line 13 498
    10.5Calculated deep temperature for coal mines in continental China 502
    10.5.1Methodology and deep temperaturefor coal minesin North China Plain 502
    10.5.2Deep temperature for coal mines incontinental China 512
    References 514
    Chapter 11 Geothermal Research onGlobalClimate Change 516
    11.1Principles and methods in the study of climate change using subsurface temperature data 517
    11.1.1Basic principles 517
    11.1.2Forward methods 519
    11.1.3Inverse methods 521
    11.1.4Characteristics of the geothermal approach 522
    11.2Case studies 523
    11.2.1 Alaska of USA 523
    11.2.2Panxi in Sichuan, SW China 524
    11.2.3Late Quaternary climate history inferred from global heat flow data 525
    11.3Database of global borehole temperature and climate change 528
    11.3.1Data source and spatial distribution 528
    11.3.2Inverse method for centenary temperature trends 529
    11.3.3Results at global and continental scales 530
    11.4Monitoring thermal interaction between land and the atmosphere 533
    11.4.1Significances of long term and systematic monitoring 533
    11.4.2Overview of world-wide observatories for ground temperature and climate change 534
    11.4.3Monitoringthe groundandairthermalenvironmentattheXi,an Jiaotong University 536
    11.5 Detecting terrestrial climate signal from lunarsurfacetemperature 539
    11.5.1Radiation budget of the Earth,s climate system 539
    11.5.2Analysis of the Apolo lunar surface temperaturedata 540
    References 542
    Index 547
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证