0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 地球天文 > 地球物理学 > 地热学及其应用

相同语种的商品

浏览历史

地热学及其应用


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
地热学及其应用
  • 书号:9787030457349
    作者:汪集暘等
  • 外文书名:
  • 装帧:圆脊精装
    开本:16
  • 页数:543
    字数:812000
    语种:zh-Hans
  • 出版社:
    出版时间:2015-09-01
  • 所属分类:
  • 定价: ¥380.00元
    售价: ¥300.20元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书是一部系统论述地热学理论及其实际应用的专著。全书分上、下两篇共11章,第1章全面介绍了地热学的学科定位与体系,回顾了其发展历程,展望了其未来趋势。第2章至第6章(上篇)是理论地热学部分,系统介绍地球内部热量的产生和传递、我国与全球大地热流分布、岩石圈热结构及其深部地球动力学含义等。第7章至第11章(下篇)是地热学应用部分,重点介绍地热学在地热资源开发利用、油气和天然气水合物资源勘探、矿山热害防治及全球变化研究等方面的应用。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    序一
    序二
    前言
    第1章 绪论 1
    1.1 地热学及其研究对象 1
    1.2 地热学研究方法 2
    1.3 地热学发展简史与酿进展 3
    1.4 地热学发展方向展望 9
    1.5 结语 13
    参考文献 15
    上篇 基础篇
    第2章 地球内热与热传递 19
    2.1 地球内热的起源 19
    2.1.1 地球的重力位能转化热 19
    2.1.2 放射性同位素衰变产生的热 21
    2.1.3 地球内热的损耗 24
    2.2 地球内热的演化 25
    2.2.1 地球内部的温度分布 26
    2.2.2 地球内热演化的历史 32
    2.2.3 地幢对流与地幔热柱的热演化模型 37
    2.3 地球与类地行星内热的比较 44
    2.3.1 地球与类地行星内热演化参数与机制的比较 44
    2.3.2 地球与水星、月球内热演化的比较 47
    2.3.3 地球与金星内热演化的比较 48
    2.3.4 地球与火星内热演化的比较 49
    2.4 地球内部的热传递 52
    2.4.1 地球内部的热传导 52
    2.4.2 地球内部的热对流 58
    2.4.3 地球内部的热辐射 60
    参考文献 61
    第3章 中国陆地大地热流 64
    3.1 地温测量 64
    3.1.1 地壳表层温度分带 65
    3.1.2 稳态与非稳态钻井地温测量 70
    3.1.3 地温梯度 78
    3.1.4 钻井测温曲线的地质涵义 79
    3.2 岩石热物性 83
    3.2.1 岩石热导率 83
    3.2.2 热导率空间变化及其热效应 88
    3.2.3 比热和热扩散率 89
    3.3 大地热流 91
    3.3.1 热流值计算 91
    3.3.2 实测与估算热流值 93
    3.3.3 热流值校正 94
    3.3.4 热流数据质量分类 99
    3.4 中国大陆地区热流图 99
    3.4.1 热流数据汇编 99
    3.4.2 中国大陆地区热流图 101
    3.4.3 热流异常及其控制因素 103
    3.5 区域热流格局的形成机制 113
    3.5.1 热流-地貌高程-新生代火山活动 113
    3.5.2 热流-构造-热事件、造山作用年龄的关系 115
    3.5.3 热流分布格局的形成机制 116
    参考文献 120
    第4章 中国海域大地热流 123
    4.1 海底热流调查设备 124
    4.1.1 常规海底地热探针 124
    4.1.2 其他海底热流测量设备 127
    4.2 数据处理方法 129
    4.2.1 温度偏移校正 130
    4.2.2 数据解算方法 131
    4.2.3 地温梯度和热流计算 134
    4.3 海底沉积物热导率 135
    4.3.1 实验室热导率测量 136
    4.3.2 热导率温压校正 139
    4.4 海底热流影响因素与校正 139
    4.4.1 沉积作用 139
    4.4.2 海底水温周期性变化 142
    4.5 中国周边海域热流分布特征 143
    4.5.1 南海 143
    4.5.2 渤海 148
    4.5.3 黄海 152
    4.5.4 东海 153
    4.5.5 几点认识 155
    参考文献 156
    第5章 全球热流 160
    5.1 全球热流数据库与热流图 160
    5.2 大地热流与构造-热事件的关系 166
    5.2.1 构造热与热松弛时间 167
    5.2.2 典型构造事件的瞬时热效应 168
    5.3 热流与板块构造 169
    5.3.1 概述 169
    5.3.2 大陆热流 170
    5.3.3 大洋热流 175
    5.4 全球热量收支 179
    5.4.1 地球内热源的构成与分配 179
    5.4.2 地球热散失量的不对称性 181
    参考文献 182
    第6章 岩石圈热结构 186
    6.1 岩石生热率 186
    6.2 地震波速与岩石生热率 189
    6.2.1 地震波速与生热率的函数方程 189
    6.2.2 定量关系的质疑 191
    6.3 热流与生热率的线性经验关系 194
    6.3.1 线性经验关系的提出 194
    6.3.2 花岗岩体中的生热率分布研究 195
    6.3.3 地壳剖面生热率的研究 196
    6.3.4 热流与生热率线性关系的地球物理模拟 200
    6.3.5 中国东南地区热流和生热率的关系研究 201
    6.3.6 全球热流省资料统计分析 202
    6.3.7 热流与生热率线性关系探究 205
    6.4 中国大陆地区生热率研究现状和进展 206
    6.4.1 中国东南地区生热率的区域分布特征 207
    6.4.2 中国大陆科学钻探孔生热率的垂向分布特征 209
    6.4.3 苏鲁地壳的生热模型 211
    6.4.4 中国大陆地区地壳生热模型的对比 213
    6.5 岩石圈热结构 214
    6.5.1 岩石圈热结构分析 214
    6.5.2 中国岩石圈热结构分区 217
    6.5.3 岩石圈热结构的动力学意义 219
    6.6 热岩石圈厚度 221
    6.6.1 热岩石圈厚度的确定 221
    6.6.2 地震-热岩石圈厚度 223
    6.6.3 克拉通热岩石圈与地震岩石圈厚度的对比 224
    6.7 岩石圈热-流变结构与大陆动力学 227
    6.7.1 大陆岩石圈热-流变结构的时空特征 227
    6.7.2 岩石圈热-流变性质对地球动力学事件的制约 230
    6.7.3 大陆构造与岩石圈热-流变结构 232
    6.8 热与克拉通破坏 235
    6.8.1 放射性生热与克拉通热平衡 236
    6.8.2 地幔柱与克拉通热平衡 236
    6.8.3 板块俯冲与克拉通热平衡 237
    6.8.4 太平洋板块俯冲与华北克拉通破坏 238
    参考文献 241
    下篇 应用篇
    第7章 地热系统与地热资源 257
    7.1 地热资源概述 257
    7.2 地热系统成因分析 258
    7.2.1 高温对流型地热系统——羊八井型 262
    7.2.2 中低温对流型地热系统——漳州型 263
    7.2.3 中低温对流传导型地热系统——雄县型 266
    7.3 地热系统探测与模拟方法 268
    7.3.1 土壤气体探测方法 270
    7.3.2 微动探测在地热勘查中的应用 276
    7.3.3 电磁法地热探测 285
    7.4 沉积盆舰热资源评价:以苏北盆地建湖隆起为例 292
    7.4.1 地热资源评价方法 292
    7.4.2 苏北盆地建湖隆起 295
    7.5 油区地热资源评价:以大庆油区为例 333
    7.6 我国大陆地区干热岩地热资源评价 364
    参考文献 372
    第8章 含油气盆地地热学 377
    8.1 地热与石油 377
    8.2 古地温计方法 378
    8.2.1 有机质古地温计 379
    8.2.2 低温热年代学古地温计 383
    8.2.3 其他方法 396
    8.2.4 古温标热历史恢复方法和原理 406
    8.3 地球动力学方法 410
    8.3.1 裂谷盆地(多期)拉张动力学模型 411
    8.3.2 沉积盆地岩石圈构造-热演化模拟的应变速率法 416
    8.3.3 前陆(挤压)盆地动力学模型 422
    8.4 盆地热历史与油气关系 426
    8.4.1 热史恢复实例 426
    8.4.2 烃源岩成熟度演化模拟 431
    8.4.3 烃源岩灶演化模拟 433
    参考文献 437
    第9章 地热与天然气水合物 445
    9.1 天然气水合物稳定带厚度的计算 445
    9.1.1 基本原理 445
    9.1.2 应用实例 447
    9.2 BSR热流及其与实测热流的对比 458
    9.2.1 BSR热流计算方法 459
    9.2.2 BSR热流与实测值的对比 459
    9.3 南海北部水合物前景的地热学预测 467
    9.3.1 甲烷通量与水合物生成带厚度 467
    9.3.2 对水合物前景的讨论 469
    参考文献 471
    第10章 矿山地热 473
    10.1 矿山热害与矿山地热学 473
    10.2 矿山地温场形成模式 474
    10.2.1 区域地热背景 474
    10.2.2 岩石热导率 475
    10.2.3 基底起伏变化 478
    10.2.4 地下水活动的影响 482
    10.3 矿山地温类型 486
    10.3.1 简要评述 486
    10.3.2 方案修订 487
    10.4 三河尖煤矿刘庄区地热模型研究 489
    10.4.1 矿山地热概念模型 489
    10.4.2 方法原理与流程 498
    10.4.3 勘探线13地温场模拟 498
    10.5 华北及全国赋煤区地热背景及深部地温预测 502
    10.5.1 华北矿区深部地温预测 502
    10.5.2 全国煤矿区地温概况 512
    参考文献 514
    第11章 地热与全球气候变化 516
    11.1 利用地温资料研究气候变化历史的原理与方法 517
    11.1.1 基本原理 517
    11.1.2 正演方法 519
    11.1.3 反演方法 521
    11.1.4 地热-古气候研究方法的特点 522
    11.2 典型实例分析 523
    11.2.1 美国阿拉斯加州 523
    11.2.2 四川攀西地区钻孔温度反演结果 524
    11.2.3 利用全球热流数据研究晚第四纪气候变化 525
    11.3 全球钻孔温度与气候变化历史数据库 528
    11.3.1数据来源和分布 528
    11.3.2 百年趋势反演方法 529
    11.3.3 全球和大陆尺度结果分析 530
    11.4 陆地与大气热相互作用监测 533
    11.4.1 长期系统监测的重要性 533
    11.4.2 国际地温与气候变化监测站概况 534
    11.4.3 西安交通大学热环境与气象监测站 536
    11.5 从月球表面温度提取地球气候变化信息 539
    11.5.1 地球气候系统的辐射平衡 539
    11.5.2 阿波罗月表温度数据的实证 540
    参考文献 542
    索引 547
    Contents
    Foreword One
    Foreword Two
    Preface
    Chapter 1 Introduction 1
    1.1 Geothermics and its scope 1
    1.2 Geothermal research methods 2
    1.3 Brief history of geothermics and recentprogresses 3
    1.4 Prospects of the future geothermics 9
    1.5 Concluding remarks 13
    References 15
    Section One Fundamentals
    Chapter 2 The Earth’sInternalHeat and HeatTransfer 19
    2.1 The Origin of the Earth’s internal heat 19
    2.1.1 Heat converted from gravitational potential energy 19
    2.1.2 Heat generated by the radioactive isotope decay 21
    2.1.3 Sinks of the Earth’s internal heat 24
    2.2 Evolution of the Earth’s internal heat 25
    2.2.1 Temperature distribution in the interior of the Earth 26
    2.2.2 Thermal history of the Earth’s interior 32
    2.2.3 Thermal evolution model of Mantle convection and Mantle plume 37
    2.3 Comparison of internal heat between the Earth and other terrestrial planets 44
    2.3.1 Mechanismsofthethermalevolution of the Earth and terrestrialplanets 44
    2.3.2 Comparisonofthethermalevolution of the Earth,Mercury and the Moon 47
    2.3.3 Comparisonofthethermalevolution of the Earth and Venus 48
    2.3.4 Comparisonofthethermalevolution of the Earth and Mars 49
    2.4 Heat transfer in the Earth’s interior 52
    2.4.1 Heat conduction 52
    2.4.2 Heat convection 58
    2.4.3 Heat radiation 60
    References 61
    Chapter 3 Terrestrial Heat Flow in the ContinentalAreaofChina 64
    3.1 Subsurface temperature measurements 64
    3.1.1 Temperature zoning at shallow depths 65
    3.1.2 Equilibrium and non-equilirium temperature measurements in boreholes 70
    3.1.3 Subsurface temperature gradient 78
    3.1.4 Geological implications of borehole temperature logs 79
    3.2 Thermal properties of rocks 83
    3.2.1 Thermal conductivity 83
    3.2.2 Spatial variation of thermal conductivity and its thermal effects 88
    3.2.3 Specific heat and thermal diffusivity 89
    3.3 Terrestrial heat flow 91
    3.3.1 Calculation of heat flow 91
    3.3.2 Measured and estimated heat flow 93
    3.3.3 Correction of measured heat flow 94
    3.3.4 Quality classification of heat flow data 99
    3.4 Heat flow map of the continental area of China 99
    3.4.1 Compilation of heat flow data 99
    3.4.2 Heat flow map of the continental area of China 101
    3.4.3 Heat flow anomalies and their control factors 103
    3.5 Regional heat flow pattern and its tectonic applications 113
    3.5.1 Heat flow-topography elevation-Cenozoic volcanism 113
    3.5.2 Heat flow-tectono-thermal event and orogenic age 115
    3.5.3 Regional pattern of heat flow and its deep geodynamicsorigin 116
    References 120
    Chapter 4 Heat Flow in the Adjacent Seas of China 123
    4.1 Instrumentation of seafloor heat flow measurements 124
    4.1.1 Traditional seafloor heat flow probes 124
    4.1.2 Other instrumentation of seafloor heat flow measurement 127
    4.2 Data processing 129
    4.2.1 Correction for instrumental drift 130
    4.2.2 Data reduction 131
    4.2.3 Geothermal gradient and heat flow 134
    4.3 Thermal conductivity of seafloor sediments 135
    4.3.1 Laboratory measurement of thermal conductivity 136
    4.3.2 Temperature and pressure corrections of thermal conductivity 139
    4.4 Influence factors of seafloor heat flow and their corrections 139
    4.4.1 Sedimentation effect 139
    4.4.2 Periodic temperature variations of bottom water 142
    4.5 Heat flow distribution features of the adjacent seasof China 143
    4.5.1 TheSouth China Sea 143
    4.5.2 TheBohai Sea 148
    4.5.3 TheYellow Sea 152
    4.5.4 TheEast China Sea 153
    4.5.5 Remarks 155
    References 156
    Chapter 5 Global Heat Flow 160
    5.1 Global heat flow database and heat flow pattern 160
    5.2 Relationship between heat flow and tectono-thermal events 166
    5.2.1 Tectonic heating and thermal relaxation 167
    5.2.2 Transient thermal effects of tectonic events 168
    5.3 Global heat flow and plate tectonics 169
    5.3.1 Overview 169
    5.3.2 Continental heat flow 170
    5.3.3 Marine heat flow 175
    5.4 Global heat budget 179
    5.4.1 Components and partition of the Earth,sinner heat sources 179
    5.4.2 Asymmetrical distribution of terrestrial heat flux 181
    References 182
    Chapter 6 ThermalStructure of theLithosphere 186
    6.1 Heat production 186
    6.2 Seismic velocity and heat production 189
    6.2.1 Equations of seismic velocity and heat production 189
    6.2.2 Questions regarding the seismic velocity-heat production relationship 191
    6.3 Empirical linear relationship between heat flow andheatproduction 194
    6.3.1 Empirical linear relationship 194
    6.3.2 Heat production in granite plutons 195
    6.3.3 Heat production along selected crust profiles 196
    6.3.4 Geophysical simulation on the linear relationship between heat flow and heat production 200
    6.3.5 Case study of the relationship between heat flow and heat production in Southeast China 201
    6.3.6 Statistical analysis of global heat flow provinces 202
    6.3.7 Study on the relationship between heat flow and heat production 205
    6.4 Advances in the heat production for the continentalareaof China 206
    6.4.1 Heat production distribution in Southeast China 207
    6.4.2 Variation of heat production rate in the Chinesecontinentalscientific drilling 209
    6.4.3 Heat production model for the Sulu crust profile 211
    6.4.4 Comparison of continental heat production models in China 213
    6.5 Thermal structure of the lithosphere 214
    6.5.1 Analysis of lithospheric thermal structures 214
    6.5.2 Regional patterns of the lithospheric thermal structure in China 217
    6.5.3 Geodynamical significances of lithospheric thermal structure 219
    6.6 Thermal thickness of the lithosphere 221
    6.6.1 Determination of thermal lithospheric thickness 221
    6.6.2 Seismic-thermal lithosphere thickness 223
    6.6.3 Comparison between thermal and seismic lithosphere thicknesses of a craton 224
    6.7 Lithospheric thermo-rheological structure andcontinentaldynamics 227
    6.7.1 Tempo-spatial pattern of continental lithospheric thermo-rheological structure 227
    6.7.2 Constraints of lithospheric thermo-rheological structure on geodynamic processes 230
    6.7.3 Continental tectonics and lithospheric thermo-rheological structure 232
    6.8 Heating and craton destruction 235
    6.8.1 Heat production and thermal equilibrium of a craton 236
    6.8.2 Mantle plume and thermal equilibrium of a craton 236
    6.8.3 Plate subduction and thermal equilibrium of a craton 237
    6.8.4 Pacific plate subduction and the North China Craton destruction 238
    References 241
    Section Two Applications
    Chapter 7 Geothermal Systems and Geothermal Resources 257
    7.1 Overview of geothermal resources 257
    7.2 Genesis analyses of geothermal systems 258
    7.2.1 High temperature convective system-Yangbajing geothermal field 262
    7.2.2 Medium and low temperature convective system-Zhangzhou geothemal field 263
    7.2.3 Medium and low temperature conductive-convective system-Xiongxian geothermal field 266
    7.3 Exploration and simulation method of geothermal systems 268
    7.3.1 Measurement and analysis of gases in soils 270
    7.3.2 Use of micro-tremor in geothermal exploration 276
    7.3.3 Use of electromagnetic methods in geothermal exploration 285
    7.4 Geothermal resources in sedimentary basins:Acase studyof the Jianhu Uplift 292
    7.4.1 Methods of geothermal resources assessment 292
    7.4.2 The Jianhu Uplitt in the North Jiangsu Basin 295
    7.5 Oil-heat co-production in oilfields:A case study of the Daqin Oilfield 333
    7.6 Assessment of hot-dry-rock resources in the continental area of China 364
    References 372
    Chapter 8 Geothermics in the Petroliferous Basins 377
    8.1 Geothermal and petroleum 377
    8.2 Paleothermal indicators 378
    8.2.1 Paleothermal indicators of organic matters 379
    8.2.2 Lower temperature thermochronology 383
    8.2.3 Other paleothermal methods 396
    8.2.4 Thermal history reconstruction by paleothermal indicators 406
    8.3 Methods of geodynamics 410
    8.3.1 Geodynamic model of multiple phase extensional basins 411
    8.3.2 Strain rate method for the study of tectono-thermal evolutionof basins 416
    8.3.3 Geodynamic model of foreland (extrusional) basins 422
    8.4 Relationships between thermal history of sedimentary basinsandoil & gas 426
    8.4.1 Case study of thermal history reconstruction 426
    8.4.2 Modeling of hydrocarbon source rock maturation 431
    8.4.3 Modeling of hydrocarbon kitchen evolution 433
    References 437
    Chapter 9 Geothermal and Natural Gas Hydrate 445
    9.1 Calculation of thickness of natural gas hydrate stability zone 445
    9.1.1 Basic principles 445
    9.1.2 Case study 447
    9.2 Comparison between bottom simulating reflection (BSR) andobserved heat flow 458
    9.2.1 Calculation of BSR heat flow 459
    9.2.2 Comparison between BSR heat flow and observed heat flow 459
    9.3 Geothermal prospecting of methane hydrate 467
    9.3.1 Methane flux and the thickness of methane hydrate occurrencezone 467
    9.3.2 Prospect of methane hydrate 469
    References 471
    Chapter 10 Geothermal HazardsinCoal Mines 473
    10.1 Geothermal hazards and geothermal studies in coal mines 473
    10.2 Subsurface temperature fields in coal mines 474
    10.2.1 Regional geothermal background 474
    10.2.2 Thermal conductivity of rocks 475
    10.2.3 Relief of crystalline basement 478
    10.2.4 Impact of groundwater flow 482
    10.3 Classification of subsurface temperature fields in coal mines 486
    10.3.1 Brief review of existing schemes 486
    10.3.2 Revision of the existing scheme of classification 487
    10.4 A case study of the Liuzhuang coal mine 489
    10.4.1 Conceptual geothermal model 489
    10.4.2 Methodologies and procedures 498
    10.4.3 Subsurface temperature profile along the exploration line 13 498
    10.5 Calculated deep temperature for coal mines in continental China 502
    10.5.1 Methodology and deep temperaturefor coal minesin North China Plain 502
    10.5.2 Deep temperature for coal mines incontinental China 512
    References 514
    Chapter 11 Geothermal Research onGlobalClimate Change 516
    11.1 Principles and methods in the study of climate change using subsurface temperature data 517
    11.1.1 Basic principles 517
    11.1.2 Forward methods 519
    11.1.3 Inverse methods 521
    11.1.4 Characteristics of the geothermal approach 522
    11.2 Case studies 523
    11.2.1 Alaska of USA 523
    11.2.2 Panxi in Sichuan, SW China 524
    11.2.3 Late Quaternary climate history inferred from global heat flow data 525
    11.3 Database of global borehole temperature and climate change 528
    11.3.1 Data source and spatial distribution 528
    11.3.2 Inverse method for centenary temperature trends 529
    11.3.3 Results at global and continental scales 530
    11.4 Monitoring thermal interaction between land and the atmosphere 533
    11.4.1 Significances of long term and systematic monitoring 533
    11.4.2 Overview of world-wide observatories for ground temperature and climate change 534
    11.4.3 Monitoringthe groundandairthermalenvironmentattheXi,an Jiaotong University 536
    11.5 Detecting terrestrial climate signal from lunarsurfacetemperature 539
    11.5.1 Radiation budget of the Earth,s climate system 539
    11.5.2 Analysis of the Apolo lunar surface temperaturedata 540
    References 542
    Index 547
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证