0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 电气工程 > 电介质中的电荷积聚:测试与分析

相同语种的商品

浏览历史

电介质中的电荷积聚:测试与分析


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
电介质中的电荷积聚:测试与分析
  • 书号:9787030728944
    作者:高田逹雄,任瀚文等
  • 外文书名:
  • 装帧:圆脊精装
    开本:16
  • 页数:363
    字数:300000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2023-06-01
  • 所属分类:电气工程
  • 定价: ¥268.00元
    售价: ¥174.20元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书介绍了利用电声脉冲法和电流积分电荷法测试技术表征介质电荷时空演化的基本原理,同时介绍了量子化学计算揭示电荷演化机理的分析方法。本书给出了强场、高温、辐射等多种复杂应力场景下介质薄膜、电缆和电力电子器件等多类型试样的测试案例和典型结果,可为电力装备绝缘测试、表征、评估和设计等领域从业人员提供易于借鉴的测试手段和分析方法。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Part I Fundamentals and Applications of Q{t) Method
    1 Classification of Charge Accumulation Measurement 3
    1.1 The Progress of Space Charge Measurement Technology 3
    1.2 Q(t) Method Can Measure Charges in All Trap Levels 6
    1.3 PEA Method is Difficult to Measure Shallow Trapped Charge 7
    1.4 Explanation of Current Terms 9
    Appendix 1.1 Pico-ammeter Measurement 12
    Appendix 1.2 Precautions for Guard Ring Electrode and Pair Diode 13
    Appendix 1.3 Noise Comparison Between pA Method and Q(t) Method 15
    Appendix 1.4 Measurement of Electric Field Intensity E(0,t) at Electrode Surface 17
    References 18
    2 Fundamentals of Q(t) Measurement 21
    2.1 Q(t) Meter Circuit Configuration 21
    2.2 Q{t) Meter Measurement on High Voltage Side 22
    2.3 Selection of Capacitance of Integration Capacitor 26
    2.4 Stability of Q(t) System 26
    2.5 Consideration of Stray Capacitance 29
    2.6 Q(t) Method Applied Under High Temperature and High Voltage 31
    Reference 33
    3 Evaluation of Charge Accumulation 35
    3.1 Evaluation of Charge Accumulation by Charge Ratio Q(t)/Qo 35
    3.2 Relationship Between Relaxation Time t and Measurement Time tm 39
    3.3 Space Charge Formation and Q(t) Simulation 46
    3.4 Combination of PEA Measurement and Q{t) Measurement 51
    References 55
    4 Q(t) Data of Various Polymer Materials 57
    4.1 Q(t) Characteristics of Various Polymers .57
    4.2 Classification of Charge Accumulation Characteristics 57
    4.3 Charge Accumulation Characteristics and Molecular Structure 58
    4.4 Relationship Between Charge Accumulation and Electrostatic Potential Distribution in Molecule 67
    4.5 Improvement of Charge Accumulation Characteristics of XLPE + Voltage Stabilizer 68
    Reference 72
    5 Charge Accumulation in Inorganic Materials 73
    5.1 Q(t) Data of Inorganic Materials 73
    5.2 Electric Field Dependence and Temperature Dependence 75
    5.3 DC Permittivity 78
    5.4 Comparison of Q(t) Data Between Polymer Insulating Materials and Inorganic Materials 80
    5.5 Multilayer Ceramic Capacitors 80
    5.6 Research Subjects 86
    Reference 93
    6 Application to Insulation Diagnosis 95
    6.1 Charge Accumulation Evaluation by Q(t) Method on High Voltage Side 95
    6.2 Coaxial Cable with Temperature Rise 100
    6.3 Charge Accumulation Characteristics of DC-XLPE Cable 103
    6.4 Insulation Diagnosis After Gamma Irradiation .......104
    6.5 Diagnosis of CV Cable After Accelerated Water-Tree Deterioration 106
    6.6 Q(t) Measurement is Strongly Against External Noise 110
    6.7 Double-Layer Dielectric Interface 115
    6.8 Evaluation of Charge Accumulation in Power Devices 117
    6.9 Electrical Tree 121
    6.10 Measurement of Two-Dimensional Current Distribution 126
    6.11 Q(t) Measurement of Enameled Wire Insulation 127
    References 130
    Part II Fundamentals and Application of Pulsed Electro-Acoustic Method
    7 DC Insulation and Space Charge Accumulation 133
    7.1 Measurement of Space Charge Distribution by PEA Method 133
    7.2 DC Insulation and AC Insulation 135
    7.3 Accumulated Charge and Internal Electric Field 136
    7.4 Dielectric Deterioration and Breakdown Caused by Accumulated Electric Charge 139
    References 141
    8 PEA Method: Pulsed Electro-Acoustic Method 143
    8.1 Pulse Pressure Wave of PEA Method 143
    8.2 Signal Processing 146
    9 Generation of Pulse Pressure Wave 153
    9.1 Generation of Pulse Pressure Wave from Electrode
    Induced Charge 153
    9.2 Generation of Pressure Wave from Space Charge 155
    9.3 Generation of Pressure Wave from Polarized Charge 158
    10 Basics of Electrodynamics and Elastic Mechanics 161
    10.1 Basic Piezoelectric Formula 161
    10.2 Local Hooke’s Law and Dynamic Hooke’s Law 164
    10.3 Explanation of Convolution Integral 164
    10.4 Expansion of Dielectric Material Under Applied Electric Fields-Force Acting on Polarized Charge 169
    10.5 Fourier Transform 171
    10.6 Gaussian Filter 174
    10.7 Charged Elastic Body 176
    Reference 177
    Examples of PEA Measurement Results 179
    11.1 Accumulation of Homo and Hetero Charges 179
    11.2 Frequency Dependence of Space Charge Accumulation 180
    11.3 Charge Accumulation in a Double-Layer Dielectric 182
    11.4 Effect of MgO Addition for Blocking Space Charge 185
    11.5 Charge Accumulation Inside Coaxial Cables 187
    11.6 Distribution of Accumulated Charge in the Cross Section of the Coaxial Cable 189
    11.7 Space Charge Measurement of Long Cables 190
    11.8 Light Irradiation and Space Charge Formation 192
    11.9 Electron Beam Irradiation and Space Charge Formation 193
    11.10 Gamma Irradiation and Space Charge Formation 195
    11.11 Proton Irradiation and Space Charge Formation 196
    11.12 Comparison of Paraelectric and Ferroelectric PEA Signals 198
    11.3 3D Measurement Results of Charge Distribution 201
    11.14 Generation and Recovery of Attenuation and Dispersion of Pressure Wave 202
    References 212
    Part Ⅲ Utilization of Quantum Chemical Calculation Analysis
    12 Basics of Quantum Chemical Calculation 217
    12.1 Terms in the Electron Energy Level Diagram 217
    12.2 Atomic and Molecular Orbitals 219
    12.3 Diagram of Electron Energy Level 222
    12.4 Mulliken Atomic Charges and Electrostatic Potential Distribution 224
    12.5 Chemical Structure and Shape of Molecular Orbitals 227
    12.6 Positive Polarity and Negative Polarity of Electron Affinity 228
    12.7 Application of Fermi-Dirac Distribution Function 230
    12.8 Observation of Macromolecules by Molecular Dynamics and Density Functional Calculations 237
    References 241
    13 Application Examples of Quantum Chemical Calculation 243
    13.1 Molecular Chain Approaching and Trap Site Formation 243
    13.2 Polymerization of Monomers and Polymers 249
    13.3 Chemical Structure and Formation of Trap Sites for Charge 256
    13.4 Formation of Trap Sites in Macromolecular Systems (PE and PEN) 259
    13.5 Hopping Transfer of Charge 268
    13.6 Dominant Current Law 274
    13.7 Scope of Application of Classical Theory and Quantum Theory 278
    13.8 Electric Field Application and Band Gap 282
    13.9 Polarization and Charge Transfer Under Electric Field Application 284
    13.10 Summary 294
    14 Analysis Examples by Quantum Chemical Calculation 295
    14.1 Analysis of Charge Accumulation in PE 295
    14.2 Analysis of Charge Accumulation in PET 301
    14.3 Analysis of PI Charge Accumulation 307
    14.4 Charge Accumulation Characteristics of PEN 313
    14.5 Induced Trap Site of MgO and Fullerene Under Applied Electric Fields 318
    14.6 Analysis of Positive and Negative Charge Accumulation inETFE 325
    14.7 Relationship Between the Needed Inception Voltage of Electrical Tree and Additives 333
    14.8 MD Simulation and DF Analysis of the Mixture of PE and AO 336
    14.9 Mixture of PE and Surfactant 340
    14.10 Molecular Dynamics Simulation of Oxidized EPDM Dispersion 345
    14.11 Molecular Dynamics Simulation of PE+H2O+GMS 350
    14.12 Curing Agent Effect on Charge Accumulation of Epoxy Resin 353
    References 359
    Postscript 361
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证