0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 矿业工程 > 煤体瓦斯热力学=Thermodynamics of Gas in Coal Seam

相同作者的商品

相同语种的商品

浏览历史

煤体瓦斯热力学=Thermodynamics of Gas in Coal Seam


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
煤体瓦斯热力学=Thermodynamics of Gas in Coal Seam
  • 书号:9787030636317
    作者:冯增朝,周动,赵东
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:237
    字数:300000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2021-10-01
  • 所属分类:
  • 定价: ¥118.00元
    售价: ¥118.00元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书详细地阐述了煤体与甲烷相互作用的热量变化物理机制,以及温度对煤体中甲烷解吸及运移的控制机制。本书分为相对独立的上下两篇。上篇主要讲述煤体与甲烷的热物理作用,包括吸附热理论、煤的非均匀势阱理论及基于红外热成像的煤中甲烷富集的分形规律;下篇主要讲述温度与水对煤吸附特性的影响规律,以及温度和应力共同作用下煤体中气液两相流动规律。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    前言
    第一章 煤体瓦斯热力学引论 1
    1.1 煤体瓦斯热力学的基本概念 1
    1.2 煤体瓦斯热力学研究构架 2
    参考文献 5
    上篇 煤体与甲烷的热物理作用
    第二章 甲烷分子间的相互作用及凝聚现象 9
    2.1 分子间的相互作用 9
    2.1.1 甲烷的分子结构特征 9
    2.1.2 分子间作用力 9
    2.1.3 几种常用的势能模型 11
    2.1.4 系综理论 16
    2.2 气-液凝聚现象 19
    2.2.1 范德瓦耳斯方程对理想气体方程的修正 20
    2.2.2 范德瓦耳斯方程的统计力学解释 22
    2.2.3 其他状态方程 26
    2.2.4 等温线 26
    2.2.5 临界现象 29
    2.3 凝聚热理论计算 31
    2.3.1 克劳修斯-克拉珀龙方程 31
    2.3.2 范德瓦耳斯方程常数得到的凝聚热 32
    参考文献 33
    第三章 煤与甲烷的吸附现象及吸附热 36
    3.1 煤体的基本特性 36
    3.1.1 煤的分子结构特征 36
    3.1.2 煤体的孔隙与裂隙结构特征 37
    3.1.3 煤体表面特征 44
    3.2 固-气吸附现象 46
    3.2.1 朗缪尔方程——单分子层吸附 47
    3.2.2 BET方程—多分子层吸附 56
    3.2.3 吸附等温线 58
    3.2.4 固-气吸附的影响因素 62
    3.3 吸附热理论 63
    3.3.1 等量吸附热 64
    3.3.2 吸附势理论 65
    3.3.3 两能态简化模型 67
    3.3.4 朗缪尔单分子层统计力学模型 70
    3.3.5 模型之间的联系和区别 73
    3.3.6 化学势对吸附热的影响 76
    参考文献 77
    第四章 煤的非均匀势阱吸附甲烷规律 79
    4.1 煤的非均匀势阱吸附甲烷理论模型 79
    4.2 煤的非均匀势阱吸附甲烷特征实验研究 81
    4.2.1 非均匀势阱煤体吸附甲烷规律 82
    4.2.2 温度与吸附压力对煤与甲烷吸附热的影响 83
    4.3 基于吸附动力学的煤非均匀势阱吸附甲烷特征数值模拟 86
    4.3.1 煤与甲烷模型建立与吸附过程数值模拟 86
    4.3.2 非均匀势阱的等温吸附特征 88
    4.3.3 非均匀势阱的等压吸附特征 90
    4.3.4 覆盖率对压力与温度的敏感性 92
    4.3.5 煤与甲烷非均匀势阱等温吸附方程 93
    4.4 非均匀势阱煤体的甲烷吸附量计算方法 95
    4.4.1 非均匀势阱煤体的等温甲烷吸附过程中朗缪尔参数a与b的变化规律 95
    4.4.2 朗缪尔方法与非均匀势阱煤体的甲烷吸附量计算精度 98
    4.5 甲烷分子在孔喉空间的通过性 102
    4.5.1 甲烷在孔喉空间的势能 103
    4.5.2 含微孔孔喉的阻塞孔特性 107
    4.5.3 甲烷分子在微孔孔喉通过性的影响因素 108
    4.6 微孔孔喉对甲烷吸附/解吸动力学特性的影响 110
    4.6.1 含孔喉结构微孔解吸甲烷的数值模型 110
    4.6.2 微孔孔喉对甲烷解吸动力学特性的影响 111
    4.6.3 微孔孔喉对甲烷解吸滞后特征的影响 114
    参考文献 115
    第五章 煤体细观结构吸附甲烷特征 117
    5.1 煤体细观结构的观测研究 117
    5.1.1 材料的细观结构及其研究方法 117
    5.1.2 煤样制备与SEM-EDS测试 119
    5.1.3 煤样CT与表面层提取方法 120
    5.2 煤岩细观结构特征与分类 122
    5.2.1 煤岩SEM-EDS特征及其分类 122
    5.2.2 基于EDS面扫描的煤细观结构定量化描述 126
    5.2.3 基于CT扫描煤岩密度分布特征 132
    5.3 煤体细观结构吸附/解吸甲烷温度变化规律 132
    5.3.1 煤吸附/解吸甲烷红外热成像实验研究 132
    5.3.2 煤吸附/解吸甲烷温度变化的非均匀特征 134
    5.3.3 煤不同细观结构温度变化特征 138
    5.4 甲烷在煤体细观结构的分布与演化 142
    5.4.1 煤中不同细观结构的非均匀势阱分布特征 142
    5.4.2 煤中甲烷分布特征随吸附压力变化规律 144
    5.4.3 煤中甲烷富集区域分布的分形特征 147
    参考文献 150
    下篇 热与水作用下煤体中甲烷运移
    第六章 高温条件下煤吸附/解吸甲烷特性实验 153
    6.1 高温吸附/解吸的实验 153
    6.1.1 高温吸附实验装置 153
    6.1.2 试样的选取和加工 155
    6.1.3 高温吸附/解吸实验 155
    6.2 煤体高温吸附/解吸甲烷的特征 157
    6.2.1 定压、定容解吸特性分析 157
    6.2.2 温度、压力共同作用的煤体解吸甲烷机制 162
    6.2.3 定容、定压吸附特性分析 164
    6.2.4 等温吸附特性分析 166
    6.3 结合吸附理论对结果的综合分析讨论 168
    6.3.1 吸附模型的确定 168
    6.3.2 吸附参数a、b的分析和讨论 169
    6.3.3 温度单一因素对吸附参数a、b的影响 170
    参考文献 170
    第七章 水作用下高温煤体解吸甲烷的特性 172
    7.1 水作用下高温吸附/解吸实验 172
    7.1.1 含水煤高温吸附实验装置 172
    7.1.2 含水煤高温吸附实验介绍 175
    7.2 水作用下高温解吸实验结果 175
    7.2.1 实验数据和参数的定义 175
    7.2.2 瓦斯解吸率随温度的变化规律 176
    7.2.3 试样累计解吸率随温度的变化 179
    7.3 水作用下甲烷高温解吸特性 179
    7.3.1 温度对煤体解吸性的影响及规律 179
    7.3.2 多种煤层气开采方案的效率对比 181
    7.4 含水煤体定容吸附实验 182
    7.4.1 实验样品、装置及实验过程 182
    7.4.2 吸附速率和吸附能力分析 183
    7.4.3 预先水作用的煤体吸附性讨论 187
    7.4.4 煤体预先含水吸附的微观机制研究 188
    参考文献 190
    第八章 煤层气气液两相流动界面模型及渗流 191
    8.1 气液两相流动界面理论 191
    8.2 气液两相流动界面模型 194
    8.2.1 不计压缩性两相驱替界面模型 194
    8.2.2 压缩性两相驱替界面模型 196
    8.2.3 拟压力函数方程驱替界面模型 200
    8.3 气液两相流动界面模型验证 203
    8.3.1 非稳态气水两相流实验 203
    8.3.2 不计压缩性两相驱替界面模型数值模拟 207
    8.3.3 压缩性两相驱替界面模型数值模拟 211
    8.3.4 拟压力函数方程驱替界面模型数值模拟 215
    参考文献 220
    第九章 温度应力作用下煤体气液两相流动 221
    9.1 温度控制下气液两相流实验 221
    9.1.1 气液两相流实验设备及试件 221
    9.1.2 气液两相流实验方案与步骤 222
    9.2 温度对气液两相渗流过程的影响 223
    9.2.1 温度对产液阶段的影响 223
    9.2.2 温度对气液两相渗流各阶段的影响 224
    9.3 温度作用下气液两相流体渗流规律 228
    9.3.1 温度对单相流体渗流影响 228
    9.3.2 温度对气液两相相对渗透率的影响 232
    9.4 温度及应力作用下气液两相流变化规律 234
    9.5 气液两相产出过程温度敏感性分析 235
    参考文献 237
    CONTENTS
    Preface
    Chapter 1 Introduction 1
    1.1 The Concept of Thermodynamics of Gas in Coal 1
    1.2 The Research Content and Method of Thermodynamics of Gas in Coal 2
    Reference 5
    Section Ⅰ:Thermophysical Interaction between Coal and Methane
    Chapter 2 Interactions and Condensation in Methane Molecules 9
    2.1 Intermolecular Interaction 9
    2.1.1 The Molecular Structure of Methane 9
    2.1.2 Intermolecular Force 9
    2.1.3 Several Commonly Used Potential Energy Models 11
    2.1.4 The Theory of Statistical Ensemble 16
    2.2 The Phenomenon of Gas-Liquid Condensation 19
    2.2.1 The Modification of van der Waals Equation to the Ideal Gas Equation 20
    2.2.2 Explain with the Statistical Mechanics of van der Waals Equation 22
    2.2.3 The Others State Equations 26
    2.2.4 Isotherm 26
    2.2.5 Critical Phenomenon 29
    2.3 The Theoretical Calculation of Condensation Heat 31
    2.3.1 The Equation of Benoit Pierre Emile Clapeyron 31
    2.3.2 Condensation Heat form van der Waals Equation 32
    Reference 33
    Chapter 3 The Adsorption’s Phenomenon and Heat in Coal and Methane 36
    3.1 The Characteristics of Coal 36
    3.1.1 Molecular Structure of Coal 36
    3.1.2 Structural Characteristics of Coal Pores and Fractures 37
    3.1.3 The Surface’s Features of Coal 44
    3.2 The Phenomenon of Adsorption in Solid-Gas 46
    3.2.1 Langmuir Equation-Monolayer Adsorption 47
    3.2.2 BET Equation-Multilayer Adsorption 56
    3.2.3 The Isotherm of Adsorption 58
    3.2.4 Factors of Affecting Adsorption in Solid-Gas 62
    3.3 The Theory of Adsorption Heat 63
    3.3.1 Heat of Equal Adsorption 64
    3.3.2 The Theory of Adsorption Potential 65
    3.3.3 The Simplified Model of Two-Energy State 67
    3.3.4 Langmuir Statistical Model of Single Molecular Layer 70
    3.3.5 Connections and Differences between Models 73
    3.3.6 Effect of Chemical Potential on Adsorption Heat 76
    Reference 77
    Chapter 4 Adsorption of Methane on Coal Non-Uniform Potential Wells 79
    4.1 Theoretical Model of Methane Adsorption by Heterogeneous Potential Well in Coal 79
    4.2 Experimental Study on Characteristics of Methane Adsorption by Non-Uniform Potential Wells in Coal 81
    4.2.1 Regularity of Methane Adsorption by Non-Uniform Potential Well in Coal 82
    4.2.2 Effect of Temperature and Adsorption Pressure on Adsorption Heat of Coal and Methane 83
    4.3 Numerical Simulation of Methane Adsorption Characteristics of Coal Non-Uniform Potential Wells Based on Adsorption Kinetics 86
    4.3.1 Modeling of Coal and Methane and Numerical Simulation of Adsorption Process 86
    4.3.2 Isothermal Adsorption Characteristics of Non-Uniform Potential Wells 88
    4.3.3 Isobaric Adsorption Characteristics of Non-Uniform Potential Wells 90
    4.3.4 The Sensitivity of Coverage to Pressure and Temperature 92
    4.3.5 Isothermal Adsorption Equation of Coal and Methane Non-Uniform Potential Well 94
    4.4 Calculation Method of Methane Adsorption in Non-Uniform Potential Well Coal 95
    4.4.1 Variations of Langmuir Parameters a and b During Isothermal Methane Adsorption in Heterogeneous Potential Well Coals 95
    4.4.2 Langmuir Method and Calculation Accuracy of Methane Adsorption Amount in Coal Body with Non-Uniform Potential Well 98
    4.5 Passability of Methane Molecules in Pore Throat Space 102
    4.5.1 Potential Energy of Methane in Pore Throat Space 103
    4.5.2 Characteristics of Blocked Pores with Microporous Larynx 107
    4.5.3 Factors Affecting the Permeability of Methane Molecules in Microporous Pore Throat 108
    4.6 Effect of Microporous Pore Throat on Kinetic Characteristics of Methane Adsorption and Desorption 110
    4.6.1 Numerical Model of Micropore Desorption of Pore Throat Structure 110
    4.6.2 Effect of Microporous Pore Throat on Kinetic Characteristics of Methane Desorption 111
    4.6.3 Influence of Microporous Pore Throat on Hysteresis Characteristics of Methane Desorption 114
    Reference 115
    Chapter 5 Characteristics of Adsorption of Methane on the Meso-Structure of Coal 117
    5.1 Observation and Research on the Meso-Structure of Coal 117
    5.1.1 Microstructure of Materials and Their Research Methods 117
    5.1.2 The Preparation of Coal Sample and SEM-EDS Test 119
    5.1.3 Methods of CT Scanning and Surface Layer Extraction of Coal Samples 120
    5.2 Meso-Structural Characteristics and Classification of Coal 122
    5.2.1 Characteristics and Classification of SEM-EDS of Coal 122
    5.2.2 Quantitative Description of Coal Mesostructure Based on EDS Surface Scanning 126
    5.2.3 Density Distribution Characteristics of Coal Based on CT Scanning 132
    5.3 Temperature Variation of Mesostructure Adsorption / Desorption of Coal 132
    5.3.1 Infrared Thermal Imaging Test of Coal Adsorption / Desorption of Methane 132
    5.3.2 Non-Uniform Characteristics of Temperature Change of Coal Adsorption / Desorption Methane 134
    5.3.3 Temperature Characteristics of Different Meso-Structures of Coal 138
    5.4 Distribution and Evolution of Mesostructure of Methane in Coal 142
    5.4.1 Distribution Characteristics of Non-Uniform Potential Wells with Different Mesostructures in Coal 142
    5.4.2 The Distribution of Methane in Coal Varies with the Pressure of Adsorption 144
    5.4.3 Fractal Characteristics of the Regional Distribution of Methane Enrichment in Coal 147
    Reference 150
    SectionⅡ:Methane Transport in Coal under Heat and Water
    Chapter 6 Test of Methane Adsorption-Desorption Characteristics of Coal with High Temperature 153
    6.1 Test of High Temperature Adsorption / Desorption 153
    6.1.1 The Device of High-Temperature Adsorption 153
    6.1.2 Selection and Processing of Samples 155
    6.1.3 Test of High Temperature Adsorption / Desorption 155
    6.2 Characteristics of Methane Adsorption / Desorption at High Temperature of Coal 157
    6.2.1 Analysis of Constant Pressure and Constant Volume Desorption Characteristics 157
    6.2.2 Mechanism of Methane Desorption from Coal under Temperature and Pressure 162
    6.2.3 Analysis of Constant Volume and Constant Pressure Adsorption Characteristics 164
    6.2.4 Analysis of Isothermal Adsorption Characteristics 166
    6.3 Comprehensive Analysis and Discussion of the Results in Combination with Adsorption Theory 168
    6.3.1 Determination of Adsorption Model 168
    6.3.2 Analysis and Discussion of Adsorption Parameters a, b 169
    6.3.3 The Influence of Temperature Single Factor on Adsorption Parameters a, b 170
    Reference 170
    Chapter 7 Test of Coal Adsorption-Desorption Methane Characteristics with Water and Temperature 172
    7.1 Test of Water Injection (Water-Containing) High Temperature Adsorption 172
    7.1.1 The Device of High-Temperature (Water-Containing) and High- Pressure Adsorption Experimental 172
    7.1.2 Explanation of Conditions for Adsorption Test 175
    7.2 Results of High Temperature Desorption Experiments under the Action of Water 175
    7.2.1 Definition of Experimental Data and Parameters 175
    7.2.2 Law of Gas Desorption Rate with Temperature 176
    7.2.3 The Change of the Cumulative Desorption Rate of the Sample with Temperature 179
    7.3 Desorption Characteristics of Methane under the Action of Water in High Temperature 179
    7.3.1 The Influence of Temperature on the Desorption Property of Coal and Its Regularity 179
    7.3.2 Efficiency Comparison of Various Coalbed Methane Exploitation Schemes 181
    7.4 Constant Volume Adsorption Experiment of Water-Containing Coal 182
    7.4.1 Description of Experimental Samples, Devices and Processes 182
    7.4.2 Analysis of Adsorption Rate and Capacity 183
    7.4.3 Discussion on the Adsorption of Coal by Pre-Water Effect 187
    7.4.4 Study on the Micro-Mechanism of Absorption in Water-Containing Coal 188
    Reference 190
    Chapter 8 CBM Two-Phase of Gas-Liquid Flow Interface Model and Percolation 191
    8.1 Theory of Two-Phase of Gas-Liquid Flow Interface 191
    8.2 Two-Phase of Gas-Liquid Flow Interface Model 194
    8.2.1 Excluding Compressive Two-Phase Displacement Interface Model 194
    8.2.2 Compressive Two-Phase Displacement Interface Model 196
    8.2.3 The Quasi-Pressure Function Equation Displaces the Interface Model 200
    8.3 Model Verification of Two-Phase of Gas-Liquid Flow Interface 203
    8.3.1 The Experiment of Unsteady Gas-Water Two-Phase Flow 203
    8.3.2 Numerical Simulation of Two-Phase Displacement Interface Model Excluding Compressibility 207
    8.3.3 Numerical Simulation of Compressive Two-Phase Displacement Interface Model 211
    8.3.4 Numerical Simulation of Quasi-Pressure Function Equation Displacing Interface Model 215
    Reference 220
    Chapter 9 Two-Phase of Gas-Liquid Flow under Thermal and Stress in Coal 221
    9.1 Two-Phase of Gas-Liquid Flow Experiment under Temperature 221
    9.1.1 Two-Phase of Gas-Liquid Flow Experimental Equipment and Test Pieces 221
    9.1.2 Experimental Scheme and Steps of Two-Phase of Gas-Liquid Flow 222
    9.2 Effect of Temperature on Two-Phase of Gas-Liquid Percolation Process 223
    9.2.1 Effect of Temperature on the Liquid-Producing Stage 223
    9.2.2 Effect of Temperature on Each Phase of Two-Phase of Gas-Liquid Percolation 224
    9.3 Percolation of Two-Phase of Gas-Liquid under the Action of Temperature 228
    9.3.1 Effect of Temperature on Percolation of Single-Phase Fluid 228
    9.3.2 Influence of Temperature on the Relative Permeability of Two-Phase of Gas-Liquid 232
    9.4 Variation of Two-Phase of Gas-Liquid Flow under the Action of Temperature and Stress 234
    9.5 Temperature Sensitivity Analysis of Two-Phase of Gas-Liquid Production Process 235
    Reference 237
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证