本书主要论述了智能聚类分析的相关理论、方法和典型应用。内容由浅入深,涵盖智能聚类分析的基本概念、基本理论和主要聚类算法,并从基于信息熵粗糙集理论、信息熵自适应并行免疫遗传算法、向量空间模型、有偏观测模糊C均值等视角系统阐述了智能聚类分析方法及其典型应用。
样章试读
目录
- 目录
前言
第1章 绪论1
1.1引言1
1.2聚类分析的研究进展3
1.2.1聚类分析的基本方法3
1.2.2聚类分析的典型应用5
1.2.3聚类分析方法面临的挑战7
13用于聚类分析的智能算法8
1.4遗传算法的发展10
1.5免疫算法的发展14
1.5.1生物免疫系统14
1.5.2人工免疫系统16
1.5.3免疫遗传算法20
16粗糙集理论的发展21
1.7本章小结23
参考文献23
第2章 智能聚类分析的基本方法29
2.1智能聚类分析与数据挖掘的关系29
2.2智能聚类分析与分类的关系31
2.3智能聚类分析的过程及典型要求33
2.3.1聚类分析的基本过程33
2.3.2聚类分析的典型要求36
2.4主要聚类算法及比较37
2.4.1聚类算法评价准则37
2.4.2常见的距离函数38
2.4.3聚类分析中的聚类准则函数38
2.4.4主要聚类算法分析及比较40
2.5聚类效果的评估46
2.5.1评估的难点46
2.5.2常用的评估方法47
2.6智能聚类分析方法的研究热点49
2.7本章小结51
参考文献51
第3章 基于信息熵粗糙集理论的智能聚类分析算法55
3.1粗糙集理论基础55
3.1.1知识表达系统与决策系统55
3.1.2知识的依赖性57
3.1.3约简与核58
3.1.4知识的重要性59
3.1.5属性约简与规则约简60
3.2基于粗糙熵的智能聚类分析属性约简61
3.2.1粗糙熵61
3.2.2基于粗糙熵的智能聚类属性约简算法63
3.2.3实验验证65
3.3改进的属性约简算法在智能聚类分析中的应用67
3.4本章小结69
叁考文献69
第4章 基于信息熵自适应并行免疫遗传算法的智能聚类分析及其应用72
4.1遗传算法基础72
4.1.1基本遗传算法基本概念72
4.1.2遗传算法的实现流程73
4.2遗传算法的关键实现技术75
4.2.1遗传编码75
4.2.2初始种群的设定77
4.2.3适应度函数及尺度变换77
4.2.4遗传算子80
4.2.5遗传算法的特点85
4.2.6遗传算法的不足86
4.3改进的免疫遗传算法87
4.3.1生物免疫系统87
4.3.2免疫遗传算法基本原理88
4.3.3改进的免疫遗传算法90
4.3.4实验验证97
4.4 K均值聚类算法存在的问题IOO
4.5基于信息熵自适应并行免疫遗传算法(IPAICKA)的智能聚类分析102
4.5.1 IPAIGKA算法的基本思想102
4.5.2基于信息熵的自适应并行免疫遗传算法的K均值聚类算法103
4.6文本聚类分析应用104
4.6.1比较测试实验一105
4.6.2比较测试实验二106
4.7本章小结108
参考文献108
第5章 基于向量空间模型的智能聚类分析算法及其应用111
5.1信息检索111
5.2向量空间模型112
5.3蚁群算法的基本原理113
5.4向量空间模型的基本原理115
5.5基于路径相似度的蚁群算法117
5.5.1路径相似度118
5.5.2基于路径相似度的“信息素”更新规则120
5.6基于路径相似度的蚁群遗传算法120
5.7本章小结121
参考文献121
第6章 基于有偏观测模糊C均值智能聚类分析算法及其应用123
6.1模糊C均值智能聚类分析算法123
6.2基于有偏观测模糊C均值智能聚类分析算法124
6.3智能聚类分析在轴承故障诊断中的应用126
6.3.1实验装置127
6.3.2特征计算128
6.3.3基于熵的特征选择130
6.4实验测试结果131
6.4.1特征选择结果131
6.4.2故障识别结果132
6.4.3多故障分类133
6.5本章小结134
参考文献134