0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 生命科学 > 生物化学 > 生物信息学中的数学方法(英文版)

浏览历史

生物信息学中的数学方法(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
生物信息学中的数学方法(英文版)
  • 书号:9787030369857
    作者:王嘉松,严明
  • 外文书名:Numerical Methods in Bioinformatics:An Introduction
  • 丛书名:
  • 装帧:平装
    开本:B5
  • 页数:199
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:Q58 生物体其他化学成分
  • 定价: ¥88.00元
    售价: ¥70.40元
  • 图书介质:
    纸质书 电子书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    PREFACE
    CHAPTER 1 SOME BIOLOGICAL CONCEPTS 1
    1.1 Cell 1
    1.2 Genetic Material: DNA,Gene and RNA 1
    1.2.1 DNA 1
    1.2.2 Gene 3
    1.2.3 RNA 5
    1.3 Protein and Amino Acids 7
    1A Chromosome 9
    1.5 Omics 10
    1.5.1 Genomics 11
    1.5.2 Microarray 11
    1.5.3 Proteomics 11
    1.5.4 Lipidomics 12
    REFERENCES 13
    CHAPTER 2 GRAPHICAL REPRESENTATIONS OF DNA SEQUENCE .14
    2.1 Three-Dimension (3-D) Graphical Representation 14
    2.2 2-D Graphical Representation 15
    2.3 2-D Graphical Representations Without Degeneracy 17
    2.4 Used a 1-D Numerical Representation of four Nucleotides to Construct a 2-D Graphical Representation of the DNA Sequence 22
    REFERENCES 22
    CHAPTER 3 NUMERICAL REPRESENTATIONS OF DNA SEQUENCE 24
    3.1 4-D and 3-D Numerical Representations of a DNA Sequence 24
    3.2 2-D Numerical Representations of a DNA Sequence 25
    3.3 The Complex Numerical Representation 26
    3.4 1-D Numerical Representations of four Nucleotides and 2-D Graphical Representation of a DNA Sequence 27
    3.5 The Representations of Feature Vector, Genome Space and Matrix Representation of DNA Sequence 27
    3.6 The Numerical Representation Based on Physical, Chemical and Structural Properties of DNA Sequence 29
    3.6.1 The numerical representations based on some attribute equivalences of nucleotides 29
    3.6.2 The representation of DNA by the inspiration from codon and the idea of three attribute equivalences 31
    3.6.3 EIIP numerical representation for nucleotides 31
    REFERENCES 32
    CHAPTER 4 NUMERICAL REPRESENTATIONS OF PROTEIN 33
    4.1 1-D Numerical and Graphical Representadons of the Amino Acid Sequence 33
    4.2 2-D Numerical and Graphical Representations of the Amino Add Sequence 34
    4.3 A 2-D Graphical Representation and Moment Vector Representation of Protein 41
    4.4 3-D Numerical Representation of Protein 44
    4.5 The 10-D Representation of an Amino Acid 45
    4.6 The Vector and Matrix Representations of Protein Sequence and Protein Space . 46
    4.7 Other Schemes of the Representation for Protein 46
    REFERENCES 47
    CHAPTER 5 PRACTICAL ORTHOGONAL TRANSFORM 49
    5.1 Some Features and Algorithms for the Discrete Fourier Transform .49
    5.1.1 Fourier transforms of the original sequence and its subsequence ..49
    5.1.2 The independency of fee Fourier transforms at several frequencies 52
    5.1.3 The Fourier transform of symbolic sequence 53
    5.1.4 Fourier transform of binary sequence 56
    5.1.5 Several algorithms of Fourier transform 57
    5.1.6 The properties of Fourier transform of real sequence 59
    5.2 Wavelet Analysis 64
    5.2.1 Introduction 64
    5.2.2 Multiresolution analysis of a fimction by Haar scaling and wavelet function 65
    5.2.3 Construction of wavelet systems 73
    5.2.4 Mallet transform 78
    REFERENCES 82
    CHAPTER 6 IDENTIFYING PROTEIN-CODING REGIONS (EXONS) BY NUCLEOTIDE DISTRIBUTIONS 83
    6.1 Portein Coding Regions Finding in DNA Sequence 83
    6.1.1 Introduction 83
    6.1.2 The stochastic simulation and several computing formulae 84
    6.1.3 FEND algorithm,predicting protein coding regions from nucleotide distributions on the three positions of a DNA sequence 97
    6.1.4 Performance evaluation of FEND algorithm 104
    6.2 The Experiment for Distinguishing Exon and Intron Sequences by a Threshold 105
    6.2.1 Motivation 105
    6.2.2 Idea of distinguishing exon and intron sequences 106
    6.2.3 Results and discussion 108
    REFERENCES 109
    CHAPTER 7 PROTEIN COMPARISON BY ORTHOGONAL TRANSFORMS
    7.1 Protein Comparison by Discrete Fourier Transformation (DFT) 111
    7.1.1 EIIP representation of protein sequence 111
    7.1.2 Symmetry of discrete Fourier transform of real sequence 112
    7.1.3 Cross-spectral function 112
    7.2 Protein Comparison by Discrete Wavelet Transformation 115
    7.2.1 Several techniques needed for DWT method 115
    7.2.2 The performance of the DWT method 120
    REFERENCES 124
    CHAPTER 8 THE APPLICATION OF VECTOR REPRESENTATIONS TO BIOLOGICAL MOLECULE ANALYSIS 125
    8.1 Use Feature Vector to Analyze DNA Sequences 125
    8.1.1 Feature vector representation of DNA sequence 125
    8.1.2 Comparing DNA sequences 126
    8.2 A Protein Map and its Applications 129
    8.2.1 Recalling a 2-D graphical representation and moment vector representation of protein 129
    8.2.2 Protein map and cluster analysis 129
    8.3 An Appendix: Introduction to Cluster Analysis 133
    REFERENCES 137
    CHAPTER 9 THE STATISTICS ANALYSIS OF LARGE AMOUNT OF EXPERIMENTAL DATA 138
    9.1 A Way to Process Microarray Data 138
    9.1.1 Data form 138
    9.1.2 Microarray data set 140
    9.1.3 Preliminary filtering 140
    9.1.4 Assessing normalization 141
    9.1.5 Hypothesis test 144
    9.1.6 Conclusion 146
    9.2 The Statistical Analysis of a Set ofLipidomics Data 146
    9.2.1 Introduction 146
    9.2.2 Statistical techniques of initial data processing 148
    9.2.3 Initial data arrangement 150
    9.2.4 Hypothesis testing analysis 154
    REFERENCES 155
    CHAPTER 10 APPLY SINGULAR VALUE DECOMPOSITION TO MICRO ARRAY ANALYSIS 156
    10.1 SVD, PCAand GSVD 156
    10.1.1 Singular value decomposition 156
    10.1.2 Principal component analysis 157
    10.1.3 Generalized singular value decomposition 159
    10.2 Apply SVD/PCA to Microarray Analysis 161
    10.3 GSVD Analyzes the Microarray Data 165
    REFERENCES 169
    CHAPTER 11 DYNAMICAL ANALYSIS MODELS OF GENE EXPRESSION 170
    11.1 Differential Equations Model of Gene Expression 170
    11.1.1 Transcription model 170
    11.1.2 Nonlinear dynamic equations 171
    11.1.3 Linearization of the nonlinear transcription model 172
    11.1.4 Approximating coefficient matrix M by Fourier series 173
    11.1.5 Solution to transcription matrix C and V 175
    11.2 Modified Linear Differential Equations Model 176
    11.3 Dynamical Model Based on Singular Value Decomposition 178
    11.3.1 Introduction 178
    11.3.2 Reducing gene’s number 179
    11.3.3 The approach based on singular value decomposition (SVD) 179
    11.3.4 The methods of solving dynamical models 182
    REFERENCES 183
    CHAPTER 12 MISSING MICROARRAY DATA INPUTTING 184
    12.1 The Ad Hoc Methods 184
    12.2 Missing Data Inputting Based on SVD 186
    12.2.1 A new way for missing data inputting 186
    12.2.2 Other method based on SVD 188
    12.3 Weighted K-Nearest Neighbors, KNN,Impute Algorithm 189
    12.4 Estimation of Missing Values in Microarray Data Based on the Least Square Principle 190
    12.4.1 Least squares estimate of the unknown variable 190
    12.4.2 The least square estimation of missing data based on genes 191
    12.4.3 The least square estimation of missing data based on arrays 192
    12.4.4 Combining the gene and array based estimates 192
    12.5 Local Least Square Inputting (LLSinpute) 193
    12.5.1 Selecting genes 194
    12.5.2 Gene-wise formulation of local least squares imputation 195
    12.6 The Comparison of the Methods of Missing Data Inputting 197
    REFERENCES 199
    PLATE
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证