0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 社科/经管/语言/法律 > 法学 > 荧光分析原理(影印)

浏览历史

荧光分析原理(影印)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
荧光分析原理(影印)
  • 书号:9787030211880
    作者:Lakowicz
  • 外文书名:Principles of Fluorescence Spectroscopy
  • 装帧:精装
    开本:B5
  • 页数:980
    字数:1200000
    语种:英文
  • 出版社:科学出版社
    出版时间:2008-03
  • 所属分类:法学
  • 定价: ¥138.00元
    售价: ¥109.02元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1. Introduction to Fluorescence
    1.1. Phenomena of Fluorescence
    1.2. Jablonski Diagram
    1.3. Characteristics of Fluorescence Emission
    1.4. Fluorescence Lifetimes and Quantum Yields
    1.5. Fluorescence Anisotropy
    1.6.Resonance Energy Transfer
    1.7. Steady-State and Time-Resolved Fluorescence
    1.8. Biochemical Fluorophores
    1.9. Molecular Information from Fluorescence
    1.10. Biochemical Examples of Basic Phenomena
    1.11. New Fluorescence Technologies
    1.12. Overview of Fluorescence Spectroscopy
    References
    Problems
    2. Instrumentation for Fluorescence Spectroscopy
    2.1. Spectrofluorometers
    2.2. Light Sources
    2.3. Monochromators
    2.4. Optical Filters
    2.5. Optical Filters and Signal Purity
    2.6 Photomultiplier Tubes
    2.7. Polarizers
    2.8. Corrected Excitation Spectra
    2.9. Corrected Emission Spectra
    2.10. Quantum Yield Standards
    2.11. Effects of Sample Geometry
    2.12. Common Errors in Sample Preparation
    2.13. Absorption of Light and Deviation from the Beer-Lambert Law
    2.14. Conclusions
    References
    Problems
    3. Fluorophores
    3.1. Intrinsic or Natural Fluorophores
    3.2. Extrinsic Fluorophores
    3.3.Red and Near-Infrared (NIR) Dyes
    3.4. DNA Probes
    3.5. Chemical Sensing Probes
    3.6. Special Probes
    3.7. Green Fluorescent Proteins
    3.8. Other Fluorescent Proteins
    3.9. Long-Lifetime Probes
    3.10. Proteins as Sensors
    3.11. Conclusion
    References
    Problems
    4. Time-Domain Lifetime Measurements
    4.l. Overview of Time-Domain and Frequency-Domain Measurements
    4.5. Electronics for TCSPC
    4.6. Detectors for TCSPC
    4.7. Multi-Detector and Multidimensional TCSPC
    4.8. Alternative Methods for Time-Resolved Measurements
    4.9. Data Analysis: Nonlinear Least Squares
    4.10. Analysis of Multi-Exponential Decays
    4.11. Intensity Decay Laws
    4.12. Global Analysis
    4.13. Applications of TCSPC
    4.14. Data Analysis: Maximum Entropy Method
    References
    Problems
    5. Frequency-Domain Lifetime Measurements
    5.1. Theory of Frequency-Domain Fluorometry
    5.2. Frequency-Domain Instrumentation
    5.3. Color Effects and Background Fluorescence
    5.4.Representative Frequency-Domain Intensity Decays
    5.5. Simple Frequency-Domain Instruments
    5.6. Gigahertz Frequency-Domain Fluorometry
    5.7. Analysis of Frequency-Domain Data
    5.8. Biochemical Examples of Frequency-Domain Intensity Decays
    5.9. Phase-Angle and Modulation Spectra
    5.10. Apparent Phase and Modulation Lifetimes
    5.11. Derivation of the Equations for Phase-Modulation Fluorescence
    5.12. Phase-Sensitive Emission Spectra
    5.13. Phase-ModulationResolution of Emission Spectra
    7.11. Excited-StateReactions
    7.12. Theory for aReversible Two-StateReaction
    7.13. Time-Domain Studies of Naphthol Dissociation
    7.14. Analysis of Excited-StateReactions by Phase-Modulation Fluorometry
    7.15. Biochemical Examples of Excited-StateReactions
    References
    Problems
    8. Quenching of Fluorescence
    8.1. Quenchers of Fluorescence
    8.2. Theory of Collisional Quenching
    8.3. Theory of Static Quenching
    8.4. Combined Dynamic and Static Quenching
    8.5. Examples of Static and Dynamic Quenching
    8.6. Deviations from the Stern-Volmer Equation:Quenching Sphere of Action
    8.7. Effects of Steric Shielding and Charge on Quenching
    8.8. Fractional Accessibility to Quenchers
    8.9. Applications of Quenching to Proteins
    8.10. Application of Quenching to Membranes
    8.11. Lateral Diffusion in Membranes
    8.12. Quenching-Resolved Emission Spectra
    8.13. Quenching and AssociationReactions
    8.14. Sensing Applications of Quenching
    8.15. Applications of Quenching to Molecular Biology
    8.16. Quenching on Gold Surfaces
    8.17. Intramolecular Quenching
    8.18. Quenching of Phosphorescence
    References
    Problems
    9. Mechanisms and Dynamics of Fluorescence Quenching
    9.1. Comparison of Quenching andResonance Energy Transfer
    9.2. Mechanisms of Quenching
    9.3. Energetics of Photoinduced Electron Transferr
    9.4. PET Quenching in Biomoleculesr
    9.5. Single-Molecule PET
    9.6. Transient Effects in Quenching
    References
    Problems
    10. Fluorescence Anisotropy
    10.1. Definition of Fluorescence Anisotropy
    10.2. Theory for Anisotropy
    10.3. Excitation Anisotropy Spectra
    10.4. Measurement of Fluorescence Anisotropies
    10.5. Effects ofRotational Diffusion on Fluorescence Anisotropies: The Perrin Equation
    10.6. Perrin Plots of Proteins
    10.7. Biochemical Applications of Steady-State Anisotropies
    10.8. Anisotropy of Membranes and Membrane-Bound Proteins
    10.9. Transition Moments
    References
    AdditionalReading on the Application of Anisotropy
    Problems
    11. Time-Dependent Anisotropy Decays
    11.1. Time-Domain and Frequency-DomainAnisotropy Decays
    11.2. Anisotropy Decay Analysis
    11.3. Analysis of Frequency-Domain Anisotropy Decays
    11.4. Anisotropy Decay Laws
    11.5. Time-Domain Anisotropy Decays of Proteins
    11.6. Frequency-Domain Anisotropy Decays of Proteins
    11.7. HinderedRotational Diffusion in Membranes
    11.8. Anisotropy Decays of Nucleic Acids
    11.9. Correlation Time Imaging
    11.10. Microsecond Anisotropy Decays
    References
    Problems
    12. Advanced Anisotropy Concepts
    12.1. Associated Anisotropy Decay
    12.2. Biochemical Examples of Associated Anisotropy Decays
    12.3.Rotational Diffusion of Non-Spherical Molecules: An Overview
    12.3.1. Anisotropy Decays of Ellipsoids
    12.4. Ellipsoids ofRevolution
    12.5. Complete Theory forRotational Diffusion of Ellipsoids
    12.6. AnisotropicRotational Diffusion
    12.7. Global Anisotropy Decay Analysis
    12.8. Intercalated Fluorophores in DNA
    12.9. Transition Moments
    12.10. Lifetime-Resolved Anisotropies
    12.11. Soleillet'sRule: Multiplication of Depolarized Factors
    12.12. Anisotropies Can Depend on Emission Wavelength
    References
    Problems
    13. Energy Transfer
    13.1. Characteristics ofResonance Energy Transfer
    13.2. Theory of Energy Transfer for a Donor-Acceptor Pair
    13.3. Distance Measurements UsingRET
    13.4. Biochemical Applications ofRET
    13.5.RET Sensors
    13.6.RET and Nucleic Acids
    13.7. Energy-Transfer Efficiency from Enhanced Acceptor Fluorescence
    13.8. Energy Transfer in Membranes
    13.9. Effect of "τ2 onRET
    13.10. Energy Transfer in Solution
    13.11.RepresentativeR0 Values
    References
    AdditionalReferences onResonance Energy Transfer
    Problems
    14. Time-Resolved Energy Transfer and Conformational Distributions of Biopolymers
    14.1. Distance Distributions
    14.2. Distance Distributions in Peptides
    14.3. Distance Distributions in Peptides
    14.4. Distance-Distribution Data Analysis
    14.5. Biochemical Applications of Distance Distributions
    14.6. Time-ResolvedRET Imaging
    14.7. Effect of Diffusion for Linked D-A Pairs
    14.8. Conclusion
    References
    Representative Publications on Measurement of Distance Distributions
    Problems
    15. Energy Transfer to Multiple Acceptors in One, Two, or Three Dimensions
    15.1.RET in Three Dimensions
    15.2. Effect of Dimensionality onRET
    15.3. Biochemical Applications ofRET with Multiple Acceptors
    15.4. Energy Transfer inRestricted Geometries
    15.5.RET in the Presence of Diffusion
    15.6.RET in theRapid Diffusion Limit
    15.7. Conclusions
    References
    AdditionalReferences onRET between
    Unlinked Donor and Acceptor
    Problems
    16. Protein Fluorescence
    16.1. Spectral Properties of the Aromatic Amino Acids
    16.2. General Features of Protein Fluorescence
    16.3. Tryptophan Emission in an Apolar Protein Environment
    16.4. Energy Transfer and Intrinsic Protein Fluorescence
    16.5. Calcium Binding to Calmodulin Using Phenylalanine and Tyrosine Emission
    16.6. Quenching of TryptophanResidues in Proteins
    16.7. AssociationReaction of Proteins
    16.8. Spectral Properties of Genetically Engineered Proteins
    16.9. Protein Folding
    16.10. Protein Structure and Tryptophan Emission
    16.11. Tryptophan Analogues
    16.12. The Challenge of Protein Fluorescence
    References
    Problems
    17. Time-Resolved Protein Fluorescence
    17.1. Intensity Decays of Tryptophan:TheRotamer Model
    17.2. Time-Resolved Intensity Decays of Tryptophan and Tyrosine
    17.3. Intensity and Anisotropy Decays of Proteins
    17.4. Protein Unfolding Exposes the TryptophanResidue to Water
    17.5. Anisotropy Decays of Proteins
    17.6. Biochemical Examples Using Time-Resolved Protein Fluorescence
    17.7. Time-Dependent SpectralRelaxation of Tryptophan
    17.8. Phosphorescence of Proteins
    17.9. Perspectives on Protein Fluorescence
    References
    Problems
    18. Multiphoton Excitation and Microscopy
    18.1. Introduction to Multiphoton Excitation
    18.2. Cross-Sections for Multiphoton Absorption
    18.3. Two-Photon Absorption Spectra
    18.4. Two-Photon Excitation of a DNA-Bound Fluorophore
    18.5. Anisotropies with Multiphoton Excitation
    18.6. MPE for a Membrane-Bound Fluorophore
    18.7. MPE of Intrinsic Protein Fluorescence
    18.8. Multiphoton Microscopy
    References
    Problems
    19. Fluorescence Sensing
    19.1. Optical Clinical Chemistry and Spectral Observables
    19.2. Spectral Observables for Fluorescence Sensing
    19.3. Mechanisms of Sensing
    19.4. Sensing by Collisional Quenching
    19.5. Energy-Transfer Sensing
    19.6. Two-State pH Sensors
    19.7. Photoinduced Electron Transfer (PET) Probes for Metal Ions and Anion Sensors
    19.8. Probes of AnalyteRecognition
    19.9. Glucose-Sensitive Fluorophores
    19.10. Protein Sensors
    19.11. GFP Sensors
    19.12. New Approaches to Sensing
    19.13. In-Vivo Imaging
    19.14. Immunoassays
    References
    Problems
    20. Novel Fluorophores
    20.1. Semiconductor Nanoparticles
    20.2. Lanthanides
    20.3. Long-Lifetime Metal-Ligand Complexes
    20.4. Long-Wavelength Long-Lifetime Fluorophores
    References
    Problems
    21. DNATechnology
    21.1. DNA Sequencing
    21.2. High-Sensitivity DNA Stains
    21.3. DNA Hybridization
    21.4. Molecular Beacons
    21.5. Aptamers
    21.6. Multiplexed Microbead Arrays:Suspension Arrays
    21.7. Fluorescence In-Situ Hybridization
    21.8. Multicolor FISH and Spectral Karyotyping
    21.9. DNA Arrays
    References
    Problems
    22. Fluorescence-Lifetime Imaging Microscopy
    22.1. Early Methods for Fluorescence-Lifetime Imaging
    22.2. Lifetime Imaging of Calcium Using Quin-2
    22.3. Examples of Wide-Field Frequency-Domain FLIM
    22.4. Wide-Field FLIM Using a Gated-Image Intensifier
    22.5. Laser Scanning TCSPC FLIM
    22.6. Frequency-Domain Laser Scanning Microscopy
    22.7. Conclusions
    References
    AdditionalReading on Fluorescence-Lifetime Imaging Microscopy
    Problem
    23. Single-Molecule Detection
    23.1. Detectability of Single Molecules
    23.2. Total InternalReflection and Confocal Optics
    23.3. Optical Configurations for SMD
    23.4. Instrumentation for SMD
    23.5. Single-Molecule Photophysics
    23.6. Biochemical Applications of SMD
    23.7. Single-MoleculeResonance Energy Transfer
    23.8. Single-Molecule Orientation andRotational Motions
    23.9. Time-Resolved Studies of Single Molecules
    23.10. Biochemical Applications
    23.11. Advanced Topics in SMD
    23.12. Additional Literature on SMD
    References
    AdditionalReferences on Single-Molecule Detection
    Problem
    24. Fluorescence Correlation Spectroscopy
    24.1. Principles of Fluorescence Correlation Spectroscopy
    24.2.Theory of FCS
    24.4.Applications of FCS to Bioaffinity Reactions
    24.5. FCS in Two Dimensions: Membranes
    24.6. Effects of Intersystem Crossing
    24.7. Effects of ChemicalReactions
    24.8. Fluorescence Intensity Distribution Analysis
    24.9. Time-Resolved FCS
    24.10. Detection of Conformational Dynamics in Macromolecules
    24.11. FCS with Total InternalReflection
    24.12. FCS with Two-Photon Excitation
    24.13. Dual-Color Fluorescence Cross-Correlation Spectroscopy
    24.14.Rotational Diffusion and Photo Antibunching
    24.15. Flow Measurements Using FCS
    24.16. AdditionalReferences on FCS
    References
    AdditionalReferences to FCS and Its Applications
    Problems
    25.Radiative Decay Engineering:Metal-Enhanced Fluorescence
    25.1.Radiative Decay Engineering
    25.2.Review of Metal Effects on Fluorescence
    25.3. Optical Properties of Metal Colloids
    25.4. Theory for Fluorophore-Colloid Interactions
    25.5. ExperimentalResults on Metal-Enhanced Fluorescence
    25.6. Distance-Dependence of Metal-Enhanced Fluorescence
    25.7. Applications of Metal-Enhanced Fluorescence
    25.8. Mechanism of MEF
    25.9. Perspective onRET
    References
    Problem
    26.Radiative Decay Engineering:Surface Plasmon-Coupled Emission
    26.1. Phenomenon of SPCE
    26.2. Surface-PlasmonResonance
    26.3. Expected Properties of SPCE
    26.4. Experimental Demonstration of SPCE
    26.5. Applications of SPCE
    26.6. Future Developments in SPCE
    References
    Appendix I. Corrected Emission Spectra
    1. Emission Spectra Standards from300 to800 nm
    2.13-Carboline Derivatives as Fluorescence Standards
    3. Corrected Emission Spectra of9,10-Diphenyl-anthracene, Quinine, and Fluorescein
    4. Long-Wavelength Standards
    5. Ultraviolet Standards
    6. Additional Corrected Emission Spectra
    References
    Appendix II. Fluorescent Lifetime Standards
    1. Nanosecond Lifetime Standards
    2. Picosecond Lifetime Standards
    3.Representative Frequency-Domain Intensity Decays
    4. Time-Domain Lifetime Standards
    Appendix III. AdditionalReading
    1. Time-Resolved Measurements
    2. Spectra Properties of Fluorophores
    3. Theory of Fluorescence and Photophysics
    4.Reviews of Fluorescence Spectroscopy
    5. Biochemical Fluorescence
    6. Protein Fluorescence
    7. Data Analysis and Nonlinear Least Squares
    8. Photochemistry
    9. Flow Cytometry
    10. Phosphorescence
    11. Fluorescence Sensing
    12. Immunoassays
    13. Applications of Fluorescence
    14. Multiphoton Excitation
    15. Infrared and NIR Fluorescence
    16. Lasers
    17. Fluorescence Microscopy
    18. Metal-Ligand Complexes and Unusual Lumophores
    19. Single-Molecule Detection
    20. Fluorescence Correlation Spectroscopy
    21. Biophotonics
    22. Nanoparticles
    23. Metallic Particles
    24. Books on Fluorescence
    Answers to Problems
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证