0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 电气工程 > 热障涂层破坏理论与评价技术(英文版)

相同语种的商品

浏览历史

热障涂层破坏理论与评价技术(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
热障涂层破坏理论与评价技术(英文版)
  • 书号:9787030733290
    作者:周益春,杨丽
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:934
    字数:350000
    语种:en
  • 出版社:科学出版社
    出版时间:2022-10-01
  • 所属分类:
  • 定价: ¥499.00元
    售价: ¥394.21元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

整书内容分为三篇,共15章。第一篇即第1~6章,介绍热障涂层的破坏理论,其中第1章和第2章分别介绍热力化耦合的理论框架和非线性有限元理论,第3~6章分别介绍热障涂层界面氧化、CMAS腐蚀、冲蚀热力化耦合的破坏理论与机制。第二篇即第7~12章,介绍热障涂层性能与损伤的表征技术,第7~9章凝练热障涂层基本力学性能、断裂韧性、残余应力的各种先进表征方法,第10~12章介绍裂纹、界面氧化、应力应变场等关键损伤参量的无损实时表征方法。第三篇即第13~15章,介绍热障涂层性能评价技术,包括隔热与强度综合效果的评价、可靠性与服役寿命的评价以及模拟考核方法与试验平台方面的进展。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    Contents
    1 Introduction 1
    1.1 TBCs and the Corresponding Preparation Methods 2
    1.1.1 TBC Materialsand Structures 2
    1.1.2 TBC Preparation Methods 4
    1.2 TBC Spallation Failure and Its MainIn.uencingFactors 9
    1.2.1 Service Conditions for TBCs 9
    1.2.2 TBC Spallation Failure and Its MainIn.uencing Factors 10
    1.3 Solid Mechanics Requirements and Challenges Generated by TBC Failure 14
    1.3.1 Solid Mechanics Requirements Generated by TBC Failure 14
    1.3.2 Solid Mechanics Challenges Presented by TBC Failure 17
    1.4 Content Overview 21
    References 23
    2 Basic Theoretical Frameworks for Thermo–Mechano-Chemical Coupling in TBCs 27
    2.1 Continuum Mechanics 27
    2.2 Theoretical Frameworkfor Thermo–Mechano-Chemical Coupling Basedon Small Deformation 30
    2.2.1 Strain and Stress Measures BasedonSmall Deformation[5,6] 30
    2.2.2 Stress–Strain Constitutive Relations Based onSmall Deformation[5,6] 47
    2.2.3 Constitutive Theoryfor Thermomechanical CouplingBased on Small Deformation[11] 52
    2.2.4 Constitutive Theory forThermo–Mechano-Chemical Coupling Basedon Small Deformation[16] 61
    2.3 Theoretical Frameworkfor Thermo–Mechano-Chemical Coupling BasedonLarge Deformation 68
    2.3.1 Kinematic Description[9] 68
    2.3.2 Stressand StrainMeasures 71
    2.3.3 Mass Conservation and Force Equilibrium Equations 74
    2.3.4 Constitutive Theoryfor Thermomechanical Coupling Basedon Large Deformation[18,25,26] 80
    2.3.5 Constitutive Theory for Thermo–Mechano-Chemical Coupling BasedonLarge Deformation 85
    2.4 Summary and Out look 93
    References 97
    3 Nonlinear FEA of TBCs on Turbine Blades 99
    3.1 FEAPrinciples 100
    3.1.1 Functional Variational Principle 100
    3.1.2 WeakFormof theEulerianFormulation 105
    3.1.3 FEDiscretizati on of the Eulerian Formulation 108
    3.1.4 WeakFormof theLagrangian Formulation 111
    3.1.5 FE Discretizati on of the Lagrangian Formulation 113
    3.1.6 WeakFormof the Arbitrary Lagrangian–Eulerian Formulation 116
    3.1.7 Initial and Boundary Conditions 121
    3.2 FE Modeling of TBCs on Turbine Blades 122
    3.2.1 Geometric Characteristicsof Turbine Blades 122
    3.2.2 Parametric Modelingof Turbine Blades 124
    3.3 Mesh Generationfor Turbine Blades 140
    3.3.1 Generationof Unstructured Meshes 141
    3.3.2 Structured Meshes for Turbine Blades 145
    3.4 Image-Based FE Modeling 150
    3.4.1 Image-BasedFEM 151
    3.4.2 2D TGO Interface Modeling 153
    3.4.3 Porous Ceramic Layer Modeling 156
    3.4.4 D3TGO Interface Modeling Method 157
    3.5 Summaryand Outlook 158
    References 159
    4 Geometric Nonlinearity Theory for the Interfacial Oxidation of TBCs 163
    4.1 Interfacial Oxidation Phenomenon andFailure 164
    4.1.1 Characteristics and Patterns of Interfacial Oxidation 164
    4.1.2 StressField Inducedby Interfacial Oxidation 167
    4.1.3 Coating SpallationInducedby Interfacial Oxidation 170
    4.2 TGO Growth Model Basedon Diffusion Reaction 172
    4.2.1 Governing Equations 172
    4.2.2 FESimulation 178
    4.3 Thermo–Chemo–Mechanical CouplingAnalytical Model forInterfacial OxidationofTBCs 188
    4.3.1 Thermo–Chemo–Mechanical Coupling Analytical Growth Model forInterfacial Oxidation 188
    4.3.2 Thermo–Chemo–Mechanical Coupling Growth Constitutive Relations forInterfacial Oxidation 201
    4.3.3 Analysis of theThermo–Mechano-Chemical CouplingGrowthPatterns and Mechanisms DuringInterfacialOxidation 222 References 232
    5 Physically Nonlinear Coupling Growth and Damage Caused by Interfacial Oxidation in TBCs 235
    5.1 Physically Nonlinear Model forThermo–Mechano–Chemical Coupling Growth Causedby Interfacial Oxidationin TBCs 236
    5.1.1 Model Framework 236
    5.1.2 Numerical Implementation 243
    5.1.3 Resultsand Discussion 246
    5.1.4 Analytical Coupling Model for Interfacial Oxidation 252
    5.1.5 Comparison with Experimental Results 256
    5.2 Interfacial Oxidation Failure Theorythat Integrates the CZM and PFM 262
    5.2.1 Integrated CZM and PFM Framework 262
    5.2.2 Introductionto PFM 263
    5.2.3 Introductionto CZM for Phase-FieldCrack Interactions 267
    5.2.4 Numerical Implementation 271
    5.2.5 Resultsand Discussion 273
    5.3 Summary and Out look 281
    5.3.1 Summary 281
    5.3.2 Outlook 283
    References 283
    6 Thermo–Mechano–Chemical Coupling During CMAS Corrosion in TBCs 287
    6.1 Correlation Analysisof Molten CMASIn.ltration and Its KeyIn.uencingFactors 288
    6.1.1 Theoretical Model for Mol ten CMASIn.ltration Depthin EB-PVD TBCs 288
    6.1.2 Experimentsonthe MoltenCMASIn.ltration Depthinan EB-PVD TBC and Its In.uencing Factors 298
    6.1.3 CMASIn.ltration Depthinthe EB-PVD TBC and ItsIn.uencing Factors 299
    6.1.4 In.ltration of CMAS Meltsin an APS TBC 308
    6.2 Microstructural Evolution, Deformation, and Composition Loss of Coatings Dueto Corrosion 312
    6.2.1 Microstructural Evolution and Deformation ofCoatings 312
    6.2.2 Thermo–Mechano–Chemical Coupling Theory forCMASIn.ltration and Corrosionin TBCs 321
    6.2.3 Quantitative Characterizationofthe Distribution Pattern ofYin TBCs Subjected to CMAS Corrosion 328
    6.3 Phase-StructureCharacterization and Phase-FieldTheory forCMASCorrosionofCoatings 336
    6.3.1 XRD Characterization of theEvolution of theCoating PhaseStructure 336
    6.3.2 TEM Characterization of the Microstructural EvolutionofCoatings 338
    6.3.3 Thermo–Mechano–Chemical Coupling Phase-TransformationTheoryfor Corroded Coatings During theCoolingProcess 341
    6.4 SummaryandOutlook 349
    References 350
    7 Erosion Failure Mechanisms of TBCs 355
    7.1 ErosionFailure Phenomenain TBCs 355
    7.1.1 Failure Phenomenain TBCs 356
    7.1.2 TBCErosionRate  356
    7.1.3 Comparison of the Erosion Performance ofVariousCoatings 357
    7.1.4 GeneralPattern of theErosion Performance of TBCs 358
    7.2 ErosionFailure ModesofTypical TBCs 360
    7.2.1 ErosionFailure Modesof EB-PVD TBCs 360
    7.2.2 ErosionFailureModeofAPSTBCs[1,15,21] 362
    7.2.3 ErosionFailure Mode of PS-PVD TBCs [15, 26–28,34,35] 364
    7.2.4 CMASErosionFailureof TBCs 365
    7.2.5 FactorsAffectingthe Erosion Performance of TBCs 366
    7.3 Numerical Simulation of the Correlations Between theErosionParametersof TBCs 368
    7.3.1 Dimensional Analysis Theory 369
    7.3.2 Dimensional Analysisof Erosionin TBCs 371
    7.3.3 Numerical SimulationAnalysisoftheCorrelations BetweenErosionParameters 373
    7.4 Erosion Failure Behavior Analysis Considering MicrostructuralEffects 377
    7.4.1 Numerical Model of theTrue Microstructure of anEB-PVDTBC 378
    7.4.2 Yield Conditions Consideringthe Microstructure 379
    7.4.3 CorrelationAnalysis ofVariousParameters in theErosion Process 380
    7.4.4 AnalysisofTypical ErosionFailure Modes 383
    7.5 ErosionFailure Mechanisms and Resistance Indices of TBCs 390
    7.5.1 Erosion Resistance Index ofEB-PVD TBCs 391
    7.5.2 Resistance IndexofAPS TBCs 394
    7.6 ErosionFailure Mechanism DiagramsofTBCs 395
    7.6.1 EstablishmentofaFailure Mechanism Diagram froma Theoretical Perspective 396
    7.6.2 Establishment ofFailure Mechanism Diagrams fora CertainFailure Mode fromaNumerical Simulation Perspective 400
    7.7 SummaryandOutlook 405
    7.7.1 Summary 405
    7.7.2 Outlook 405
    References 406
    8 Basic Mechanical Properties of TBCs and Their Characterization 409
    8.1 InSitu Measurement of theElastic Behavior of EB-PVD TBCs 410
    8.1.1 DIC-Based MicrobendingTesting 410
    8.1.2 Analysis of theExperimental and Numerical SimulationResults 414
    8.1.3 Factors Affecting the Elastic Modulus Measurement Accuracy 417
    8.2 Temporal and SpatialCorrelations Between theMechanical Properties and MicrostructureofTBCs 419
    8.2.1 Principle of the HSNM Technique in theCharacterization of Microstructure andTemporal and SpatialCorrelations 420
    8.2.2 HSNM and DeconvolutionTechniques 421
    8.2.3 Characterizationofthe Mechanical Properties of BC Layers and Ceramic Coatings by HSNM 424
    8.2.4 Characterization of the PhaseDistribution of the Microstructure of the TBC Based on Deconvolution 428
    8.3 Creep Behaviorof TBCs 432
    8.3.1 High-TemperatureCreep Behavior of EB-PVD TBCs 432
    8.3.2 Creep Behaviorof TGOs UnderTensile Stress 435
    8.3.3 Effects of the Creep Behavior of TBCs onInterfacialStresses  439
    8.4 SummaryandOutlook 442
    8.4.1 Summary 442
    8.4.2 Outlook 443
    References 444
    9 Fracture Toughness Characterization of TBCs 447
    9.1 Surface FractureToughness KIC Characterization ofTBCs 448
    9.1.1 De.nitionofFractureToughness 448
    9.1.2 Surface KIC Characterizationofthe PureCeramic Surfaceof TBCs Usingthe SENB Method 448
    9.1.3 Surface KIC Characterization ofTBCs Using Three-Point Bending Combined with Acoustic Emission 454
    9.2 Conventional Methods forCharacterizingthe Interfacial KICof TBCs 461
    9.2.1 Theoretical Model for the Interfacial KIC CharacterizationofTBCs 461
    9.2.2 InterfacialKIC Characterization ofTBCs Using theThree-Point Bending Method 464
    9.3 Surface and Interfacial KIC Characterization ofTBCs Usingthe IndentationMethod 466
    9.3.1 Surface KIC Characterization ofTBCs Using theIndentationMethod 466
    9.3.2 InterfacialKIC Characterization ofTBCs Using theIndentationMethod 468
    9.4 Interfacial KIC Characterization of TBCs Using theBucklingMethod 470
    9.4.1 BucklingTestfor Determiningthe InterfacialKIC of TBCs 470
    9.4.2 FESimulationfor theBucklingofTBC Interfacial KIC 477
    9.4.3 Theoretical Model for the TBC InterfacialKIC CharacterizationBased on Buckling Delamination 482
    9.5 InterfacialKIC CharacterizationofTBCsby theBlisterTest 487
    9.6 InSituKIC CharacterizationofTBCsatHighTemperatures 495
    9.6.1 Surface KIC Characterization ofTBCs at High Temperaturesby Indentation 496
    9.6.2 KIC Characterization of TBCs at High Temperaturesby theThree-Point BendingTest 499
    9.7 SummaryandOutlook 508
    9.7.1 Summary 508
    9.7.2 Outlook 509
    References 509
    10 Residual Stresses in TBCs 513
    10.1 FormationofResidual Stressesin TBCs 513
    10.1.1 Causesof Residual Stressesin TBCs 513
    10.1.2 In.uencingFactorsof the Residual Stresses in TBCs 514
    10.2 Simulation and Predictionofthe Residual Stressesin TBCs 518
    10.2.1 Stress Field Evolution and Danger Zone Predictionof aTurbineBlade witha TBC 519
    10.2.2 AnalysisoftheStressFieldintheTurbine Blade with a TBC Using the Fluid–Solid Coupling Method 522
    10.3 DestructiveCharacterization of the Residual Stresses in TBCs 541
    10.3.1 Characterizationbythe CurvatureMethod 541
    10.3.2 Characterizationbythe Drilling Method 544
    10.3.3 CharacterizationbytheRCM 553
    10.4 NondestructiveCharacterizationofthe Residual Stresses in TBCs 558
    10.4.1 XRDCharacterization 558
    10.4.2 CharacterizationbyRaman Spectroscopy 565
    10.4.3 CharacterizationofResidual Stressesinthe TGO Layerby PLPS 566
    10.5 SummaryandOutlook 574
    10.5.1 Summary 574
    10.5.2 Outlook 575
    References 575
    11 Real-Time Acoustic Emission Characterization of Cracks in TBCs 579
    11.1 High-TemperatureAE DetectionMethod 580
    11.1.1 Basic PrincipleofAEDetection 580
    11.1.2 Waveguide Rod/WireTransmissionTechnique forComplex High-TemperatureEnvironments 580
    11.1.3 AESignal DetectionMethod BasedonRegional Signal Selection 583
    11.2 Analysis of theKeyParameters forCrackPattern Recognition 585
    11.2.1 KeyFailure ModesofTBCsandtheTime-Domain Characteristicsofthe RelevantAE Signals 585
    11.2.2 Pattern RecognitionofTBCFailure Modes Based on Characteristic Frequencies 585
    11.2.3 Extraction of the CharacteristicParameters forPattern RecognitionBased on ClusterAnalysis 588
    11.3 Intelligent CrackPattern RecognitionMethods Based onWaveletsandNeuralNetworks 597
    11.3.1 Basic Principle and MethodofWT 598
    11.3.2 Wavelet Analysis of AE Signalsfrom TBCs Due toDamage 609
    11.3.3 NN-BasedIntelligent Method forPattern RecognitionofAESignals 613
    11.4 QuantitativeEvaluationoftheKeyDamagein TBCs 620
    11.4.1 Basic Approach for Damage Quanti.cation  620
    11.4.2 Quantitative Analysis of the Surface Crack Density 621
    11.4.3 Quantitative Analysisof theInterface Cracks 627
    11.5 DeterminationofTBCFailure MechanismsBasedonAE Detection 631
    11.5.1 Failure Mechanisms Under ThermalCycling 631
    11.5.2 Failure Mechanism Under High-Temperature CMASCorrosion 637
    11.5.3 Failure Mechanism Under GasThermal Shock 644
    11.6 SummaryandOutlook 651
    11.6.1 Summary 651
    11.6.2 Outlook 652
    References 653
    12 Characterization of the Microstructural Evolution of TBCs by Complex Impedance Spectroscopy 657
    12.1 Basic PrincipleofCharacterizationbyCIS 658
    12.1.1 PrincipleofCIS 658
    12.1.2 Analysisof theImpedance Responsesof TBCs 659
    12.2 Numerical Simulationofthe ComplexImpedance Spectral CharacteristicsofTBCs 665
    12.2.1 FEPrincipleofCIS 665
    12.2.2 FEModel forthe ComplexImpedance Spectrum of aTBC 668
    12.2.3 Complex Impedance SpectralCharacteristics of TBCs 669
    12.2.4 Asymmetric Electrode ErrorCorrection Models 677
    12.3 ParametricOptimizationofCIS for TBCs 682
    12.3.1 FESimulation and Impedance Measurement 682
    12.3.2 OptimalACVoltageAmplitude 682
    12.3.3 EffectsoftheTestTemperature and OptimalTest Temperature 683
    12.3.4 EffectoftheElectrodeSize 686
    12.3.5 Summary 687
    12.4 CharacterizationofInterfacial Oxidationin TBCsby CIS 687
    12.4.1 Equivalent Circuitfor Interfacial Oxidation in TBCs 688
    12.4.2 Measurement of theComplex Impedance Spectrumof a TBC 689
    12.4.3 CharacterizationofInterfacial OxidationbyCIS 694
    12.5 CharacterizationofCMASCorrosionin TBCs with CIS 703
    12.5.1 Measurement of theComplex Impedance Spectra of CMAS asWell as Uncorroded and CMAS-Corroded TBCs 704
    12.5.2 Complex Impedance SpectrumCharacteristics ofCMAS 705
    12.5.3 Complex Impedance Response of theCMAS-Corroded TBC 706
    12.6 SummaryandOutlook 711
    12.6.1 Summary 711
    12.6.2 Outlook 712
    References 712
    13 Nondestructive Testing of the Surface and Interfacial Damage and Internal Pores of TBCs 715
    13.1 Characterizationofthe Strain Fieldsof TBCs UsingDIC 716
    13.1.1 Basic Principle of DIC Characterization oftheStrainField 716
    13.1.2 PreparationofDigital Speckles 718
    13.1.3 DIC/AE-Combined Method forFailure Criterion Analysis 720
    13.1.4 DIC Characterizationofthe High-Temperature Strain Fieldin TBCs 721
    13.1.5 DIC Characterizationofthe High-Temperature CMAS Corrosion-Induced Strain Fieldina TBC 727
    13.1.6 Evolution ofthe Cross-Sectional Strain Field in TBCs Coated with Different AmountsofCMAS 735
    13.1.7 Evolutionofthe Surface Strain Fieldina TBC Subjectedto CMAS Corrosion 740
    13.2 X-rayCTCharacterizationofthe Poresin TBCs UnderVA Corrosion 744
    13.2.1 PrincipleoftheCT Characterizationofthe Internal StructureofanObject 744
    13.2.2 Extraction of Pores in TBCs and 3D ReconstructionofCTImages 747
    13.2.3 CTCharacterizationoftheEvolutionofPores in TBCs UnderVACorrosion 749
    13.3 IRTNDTTechnique and ItsCurrent ApplicationStatus 757
    13.3.1 PrincipleofIRT 757
    13.3.2 IRT-BasedDamageDetection 759
    13.4 SummaryandOutlook 780
    13.4.1 Summary 780
    13.4.2 Outlook 781
    References 781
    14 Thermal Insulation Effect of TBCs on Turbine Blades 785
    14.1 Theoretical Analysisof theThermalInsulationEffect 785
    14.1.1 HeatTransferModesofTurbine Blades 787
    14.1.2 De.nitionof the ThermalInsulationEffect of TBCs onTurbine Blades 790
    14.1.3 Nondimensionalizationofthe ThermalInsulation Effect 791
    14.2 Numerical Simulationofthe ThermalInsulationEffect 794
    14.2.1 Coupled HeatTransfer 796
    14.2.2 Turbulence Models 799
    14.2.3 Numerical Simulationofthe ThermalInsulation Effectof TBCs 801
    14.3 TestingMethods forthe ThermalInsulationEffect 805
    14.3.1 Setups forSimulatingthe Service Environment ofTurbine Blades 806
    14.3.2 Real-TimeTemperatureMeasurementTechniques forTurbine Blades 810
    14.3.3 AnExperimentalInvestigationofthe Thermal InsulationEffectofa TBC onaTurbine Blade 815
    14.4 FactorsIn.uencing theThermalInsulationEffect 820
    14.4.1 In.uentialFactorsRelatedtotheMaterial 820
    14.4.2 In.uencingFactorsRelated to the Service Environment 823
    14.4.3 In.uencingFactorsRelated to theCooling Structure 824
    14.5 SummaryandOutlook 826
    References 827
    15 Reliability Assessment of TBCs 831
    15.1 Basic Reliability Theoryfor TBCs 832
    15.1.1 Randomness and DistributionofProperty, Structural, andEnvironmentalParameters 832
    15.1.2 De.nitionofReliability 834
    15.1.3 Reliability Index and ItsGeometric Meaning 837
    15.1.4 Reliability Sensitivity 839
    15.2 Reliability CalculationMethods for TBCs 840
    15.2.1 Second-Moment Methods 840
    15.2.2 MonteCarlo Methods 844
    15.2.3 MeanValueMethod and Advanced MeanValue Method 846
    15.2.4 Software-Based Numerical Calculation of theReliability 848
    15.3 Reliability Predictionfor TBCs Under ThermalCycling Stresses 851
    15.3.1 Failure Criterion and LimitState Equation 851
    15.3.2 DistributionsofBasicVariables 852
    15.3.3 Predictionofthe SpallationFailure Probability of TBCs Under Thermal Cycling, pf,tc 852
    15.3.4 Reliability Sensitivity Analysis 854
    15.4 Reliability Assessment of TBCs Under Interfacial Oxidation 855
    15.4.1 FailureCriterion 856
    15.4.2 Analysis of theStatistical Characteristics ofParameters In.uencing Interfacial Oxidation 857
    15.4.3 Reliability and Sensitivity Analysis of TBCs Under Interfacial OxidationBased on theSOSM Method 858
    15.5 Reliability Assessmentof TBCsAgainstErosionFailure 859
    15.5.1 Erosion Rate Model and Reliability Analysis Criterion for TBCs onTurbineBlades 859
    15.5.2 Method forCalculatingthe ErosionReliability of TBCs onTurbine Blades 862
    15.5.3 Statistical Analysis ofParameters Affecting ErosionFailure 869
    15.5.4 Erosion Failure Probability Prediction and Sensitivity Analysis of TBCs onTurbine Blades 871
    15.6 SummaryandOutlook 873
    15.6.1 Summary 873
    15.6.2 Outlook 874
    References 874
    16 Experimental Simulators for the Service Environments of TBCs 879
    16.1 Experimental Simulators forThermalLoads on TBCs 880
    16.1.1 Experimental Simulator for Automatic High-TemperatureThermalCycling 880
    16.1.2 Facilitiesfor Measuringthe High-Temperature Contact AngleofCMAS Duringthe CMAS Corrosion Process 882
    16.2 Combined Thermomechanical LoadingFacility for TBCs and BucklingFailure Mechanism of TBCs Under Thermomechanical Loading 887
    16.2.1 Combined Thermomechanical LoadingTesting Facilities 888
    16.2.2 Buckling Failure Modes of TBCs Under Thermomechanical Loading 890
    16.3 Static Thermo–Mechano-Chemical CouplingSimulators for TBCs onTurbine Blades 898
    16.3.1 Overall Design of an Experimental TMCC Simulation andTestingFacility for TBCs onTurbine Blades 898
    16.3.2 Introductiontothe Functions of SeveralTypical ExperimentalFacilities 902
    16.3.3 Experimental TMCC Simulation and Real-Time TestingMethods 907
    16.4 Dynamic Experimental TMCC Simulation andTesting Facilitiesfor TBCs onTurbineBlades 915
    16.4.1 Overall Design of Dynamic Experimental TMCC Simulation andTestingFacilitiesfor TBCs onTurbine Blades 915
    16.4.2 MainProgressin Dynamic Experimental TMCC Simulation andTestingFacilities 918
    16.4.3 Method and Performance of Dynamic Experimental TMCC Simulation andTesting 926
    16.5 Experimental High-TemperatureVibrationSimulators for TBCs onTurbine Blades 929
    16.5.1 High-TemperatureVibrationFacilities 929
    16.5.2 Testing of TBCs Under High-Temperature Vibration 930
    16.6 SummaryandOutlook 931
    16.6.1 Summary 931
    16.6.2 Outlook 932
    References 932
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证