0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 光学 > 固体激光材料物理学(英文版)

浏览历史

固体激光材料物理学(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
固体激光材料物理学(英文版)
  • 书号:9787030646781
    作者:罗遵度,黄艺东
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:470
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥198.00元
    售价: ¥158.40元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书主要论述固体激光材料中光的发射、吸收,晶格振动对光谱性能的影响以及无辐射跃迁、离子之间能量传递等重要物理过程的基本理论,导出计算其光谱能级和主要性能参数的公式,纠正一些文献书籍中出现的错误。从基本物理定律和公式出发,联系材料的结构和组成,对其光谱和激光性能进行较深入的分析。本书的另一个主要内容是利用基本理论知识介绍、分析当前激光技术领域几种主要激光材料的性能及其发展方向。附录中包括了分析和计算固体激光材料能级和光谱性能的重要表格。

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Energy Level of Free Ions 1
    1.1 Energy Levels of the Single Electron in Atoms (Free Ions) 1
    1.2 General Properties of Energy Level in Multi-electron of Free Ions 7
    1.3 Energy Levels of Free Transition-Metal Ions 11
    1.4 Energy Levels of Free Rare Earth Ions 15
    1.5 Theory of Interactions in Rare Earth Ions 24
    References 29
    2 Group Theory and Quantum Theory 31
    2.1 Mathematical Description of the Symmetry 31
    2.2 Basic Conception of the Group 33
    2.3 Theory of Group Representations 36
    2.4 Direct Product Group and Direct Product Representation 40
    2.5 Sketches of the Group in Spectroscopy 41
    2.5.1 Finite Group 41
    2.5.2 Permutation Group 43
    2.5.3 Continuous Groups 46
    2.6 Point Group and Their Representation 48
    2.7 Symmetry and Quantum Theory of the Ions in Solids 52
    2.8 Full Rotation Group and Angular Momentum Theory 55
    2.9 Irreducible Tensor Operators and the Calculation of Matrix Elements 61
    References 67
    3 Rare Earth Ions in Materials 69
    3.1 Crystal Field on the Active Ions 69
    3.2 Energy Level Splitting of the Rare Earth Ions 72
    3.3 Crystal Field Quantum Number 81
    3.4 Group Chain Scheme Method in Crystal Field Analysis 90
    References 101
    4 Theory of Radiative Transition 103
    4.1 Interactions Between Active Ions and Radiation 103
    4.2 Probability of Emission and Absorption Processes 107
    4.3 Selection Rules for Radiative Transition 115
    4.3.1 Selection Rules for Radiative Transition of Free Ions and Atoms 115
    4.3.2 Selection Rules for Radiative Transition of Ions in Materials 116
    References 123
    5 Spectroscopic Parameter and Their Calculation 125
    5.1 Absorption Coefficient, Absorption (Emission) Cross-Section, and Oscillator Strength 125
    5.2 Analysis of the Absorption Coefficients of Anisotropic Crystal 132
    5.3 Judd–Ofelt Approximation and Related Parameter 136
    5.4 Spectroscopic Parameter Calculation of Rare Earth Ion in Crystal 145
    5.5 Hypersensitive Transitions 156
    References 158
    6 Phonon and Spectral Line 161
    6.1 Quantization of Lattice Vibration—Phonon 161
    6.2 Phonon Emission and Absorption in the Optical Transition 170
    6.3 Main Mechanisms of the Thermal Spectral Line Broadening and Shifting 181
    6.4 The Contribution of Single-Phonon Absorption (Emission) to the Spectral Linewidth 183
    6.5 The Contribution of Phonon Raman Scattering to the Spectral Linewidth 187
    6.6 Calculation of the Thermal Shifting of Spectral Lines 192
    6.7 Examples for the Calculation of Thermal Spectral Line Broadening and Shifting 196
    References 201
    7 Energy Levels and Spectroscopic Properties of Transition Metal Ions 203
    7.1 Energy Levels and Spectral Properties of 3d1 Electron System 204
    7.2 Energy Levels and Spectral Properties of 3d2 Electron System 210
    7.3 Energy Levels and Spectral Properties of 3d3 Electronic System 219
    7.4 Relative Intensity Analysis of R Line in Ruby Polarized Absorption Spectrum 228
    7.5 Estimation of Trivalent Chromium Ion Spectral Parameters in Solid-State Laser Materials 232
    References 238
    8 Non-radiative Transition Inside Ions 241
    8.1 Introduction of Non-radiative Transition Matrix Elements 242
    8.2 Promoting Mode and Accepting Mode in Non-radiative Transition Process 246
    8.3 Non-radiative Transition Probability for Weak Coupling Systems 248
    8.4 Parallelism Between Non-radiative Transition Probability and Radiative Transition Probability 254
    8.5 Temperature Dependence of Non-radiative Transition Probability in Weak Coupling Systems 256
    8.5.1 Experimental 256
    8.6 Non-radiative Transition in Strong Coupling Systems 258
    8.7 Nonlinear Theory of Non-radiative Transition 265
    8.8 Stimulated Non-radiative Transition 268
    References 274
    9 Energy Transfer and Migration Between Ions 277
    9.1 Theory of Resonant Energy Transfer 278
    9.2 Phonon-Assisted Energy Transfer Between Ions 282
    9.3 Statistical Theory of Energy Transfer Between Ions 287
    9.4 Energy Migration Between Ions 290
    9.5 Characteristics of Concentration Dependent Fluorescence Quenching for Self-activated Laser Crystals 303
    References 306
    10 Laser and Physical Properties of Materials 309
    10.1 Brief Introduction of Solid-State Laser Principle 309
    10.2 Quality Factor of Solid-State Laser Materials 316
    10.3 Relationship Between Laser Threshold and Chemical Composition of Host Materials 318
    10.4 Thermo-Mechanical and Thermo-Optical Properties
    of Solid-State Laser Materials 322
    10.5 Laser Damage and Nonlinear Optical Properties 337
    References 342
    11 Nonlinear Optical Properties of Laser Crystals and Their Applications 345
    11.1 Second-Order Nonlinear Optical Effect of Crystal 347
    11.2 Relationship Between Fundamental and Second Harmonic Waves in SFD Laser Crystal 354
    11.3 Nonlinear Optical Coupling Equation of SFD Laser 359
    11.4 Self Sum-Frequency Mixing Effect in Nonlinear Laser Crystal 366
    11.5 Stimulated Raman Scattering Effect of Laser Crystal 374
    References 383
    12 Apparent Crystal Field Model of Laser Glass and Its Application 385
    12.1 Structure and Spectral Characteristics of Glasses 386
    12.2 Apparent Crystal Field Hamiltonian for Rare Earth Ions in Non-crystal Host 391
    12.3 Crystal Field Level Analysis for Er3+ Ions in Three Typical Glasses 399
    References 412
    Appendix A: Character Tables for Point-Symmetry Group 415
    Appendix B: Correlation Table of Group–Subgroup 421
    Appendix C: Multiplication Tables for Some Point Groups 425
    Appendix D: Squared Reduced-Matrix Elements of Unit Operator for J→J′ Transition in Rare Earth Ions 427
    Appendix E: 3jm Factors for Some Group Chains 453
    Appendix F: Clebsch-Gordan Coefficients of the Cubic Point Group with Trigonal Bases 459
    Appendix G: Integral Numerical Value Associated with the Thermal Effect of the Spectra 463
    Index 467
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证