0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 机械工程 > 结构健康监测数据科学与工程

相同语种的商品

相同作者的商品

销售排行榜

浏览历史

结构健康监测数据科学与工程


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
结构健康监测数据科学与工程
  • 书号:9787030491015
    作者:李惠等
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:
    字数:
    语种:zh-Hans
  • 出版社:
    出版时间:
  • 所属分类:机械工程
  • 定价: ¥280.00元
    售价: ¥221.20元
  • 图书介质:
    纸质书 按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书系统地总结和阐述了结构健康监测数据科学与工程的理论、方法和应用的主要研究成果。第1~3章是数字信号处理分析的基础理论和数据压缩采集及无线传输算法;第4、5章是结构模态分析与识别方法;第6、7章是结构损伤识别和模型修正方法;第8、9章是车辆荷载识别与建模方法;第10章是基于监测数据的主梁安全评定方法;第11章是基于监测数据的拉索安全评定方法;第12、13章是风工程监测数据分析方法和地震损伤识别算法;第14章是结构健康监测的Benchmark模型。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    前言
    主要符号
    第0章绪论1
    0.1结构健康监测的研究与应用概况1
    0.1.1传感技术3
    0.1.2数据科学与工程12
    0.2结构损伤识别与模型修正23
    0.2.1模态参数识别23
    0.2.2结构损伤识别28
    0.2.3结构模型修正40
    0.3结构健康监测数据分析建模与安全评定44
    0.3.1监测数据分析44
    0.3.2监测数据建模与安全评定49
    0.4结构灾害监测数据分析与评估57
    0.4.1结构风效应监测数据分析57
    0.4.2结构地震非线性模型识别与评估61
    0.5结构健康监测的Benchmark模型66
    0.6结构健康监测系统的应用69
    0.6.1桥梁结构69
    0.6.2国家游泳中心79
    0.6.3某高层建筑81
    0.6.4结构健康监测管理软件系统平台82
    第1章数字信号的基础知识86
    1.1傅里叶变换86
    1.2离散信号的傅里叶变换与快速傅里叶变换87
    1.2.1离散傅里叶变换87
    1.2.2快速傅里叶变换88
    1.2.3栅栏效应88
    1.2.4频率分辨率89
    1.2.5能量泄漏与加窗90
    1.3采样定理93
    1.4拉普拉斯变换96
    1.4.1拉普拉斯变换的定义96
    1.4.2拉普拉斯变换的函数微分性质98
    1.5信号滤波与去噪98
    1.5.1滤波99
    1.5.2小波去噪102
    第2章数据压缩采样104
    2.1数据压缩采样的数学原理104
    2.1.1压缩感知问题描述104
    2.1.2稀疏性105
    2.1.3测量矩阵106
    2.1.4优化求解算法106
    2.2应用实例108
    2.2.1桥梁监测加速度压缩采样108
    2.2.2大跨空间结构监测加速度压缩采样117
    第3章无线传输数据丢失恢复算法121
    3.1无线传输数据丢失概述121
    3.2无线传输数据丢失恢复算法126
    3.2.1无测量噪声的数据丢失恢复算法126
    3.2.2有测量噪声的数据丢失恢复算法127
    3.3应用实例128
    3.3.1桥梁监测数据丢失恢复128
    3.3.2大跨空间结构监测数据丢失恢复140
    第4章结构模态分析理论基础144
    4.1单自由度结构的频响函数和脉冲响应函数144
    4.1.1线性黏滞阻尼动力系统144
    4.1.2线性结构阻尼动力系统148
    4.1.3频响函数曲线性质150
    4.1.4不同荷载作用下结构频响函数和脉冲响应函数155
    4.2多自由度结构频响函数159
    4.3多自由度结构实模态频响函数和脉冲响应函数163
    4.3.1多自由度结构模态参数163
    4.3.2多自由度结构实模态频响函数与单位脉冲响应函数166
    4.3.3算例分析168
    4.4多自由度结构复模态频响函数174
    4.4.1线性黏滞阻尼动力系统174
    4.4.2线性结构阻尼动力系统179
    4.4.3复模态性质180
    4.4.4复模态频响函数及脉冲响应函数181
    4.4.5算例分析184
    第5章环境激励下结构模态参数识别方法188
    5.1频域分解法188
    5.2NExT法与ERA法192
    5.2.1NExT法192
    5.2.2ERA法195
    5.3随机子空间方法202
    5.4时变环境结构模态参数分析208
    5.4.1主成分分析方法208
    5.4.2神经网络建模方法212
    5.5应用实例214
    5.5.1结构健康监测系统概况214
    5.5.2结构模态参数识别结果215
    5.5.3环境因素与模态参数关系模型222
    第6章结构损伤识别方法233
    6.1基于模态参数的结构损伤识别方法233
    6.1.1基于频率的结构损伤识别方法233
    6.1.2基于振型的结构损伤识别方法235
    6.2结构损伤识别信息融合方法238
    6.2.1D-S证据理论238
    6.2.2Bayesian推理241
    6.2.3D-S证据理论与Bayesian推理的比较242
    6.2.4基于信息融合的结构损伤识别方法246
    6.3算例分析249
    6.3.1桥梁有限元模型249
    6.3.2结构损伤识别结果250
    第7章结构模型修正255
    7.1模态参数灵敏度方法255
    7.1.1结构模态参数灵敏度255
    7.1.2结构参数估计方法257
    7.2Bayesian概率方法261
    7.3应用实例264
    7.3.1斜拉桥子结构特征264
    7.3.2待修正结构参数268
    7.3.3修正结构参数270
    第8章车辆荷载极值模型与疲劳荷载谱273
    8.1车辆荷载监测数据特征273
    8.2随机过程概率模型与极值概率模型277
    8.2.1滤过Poisson过程与极值概率模型277
    8.2.2滤过Weibull过程与极值概率模型279
    8.2.3平稳二项随机过程与极值概率模型279
    8.2.4更新过程与极值概率模型281
    8.3基于监测数据的车辆荷载极值建模与概率模型284
    8.3.1截口分布概率模型284
    8.3.2到达时间概率模型287
    8.3.3极值概率模型数值计算方法288
    8.3.4应用实例291
    8.4基于监测数据的车辆疲劳荷载谱建模与模型298
    8.4.1中国车辆分类298
    8.4.2车辆疲劳荷载谱300
    8.4.3车流量预测Logistic方法302
    8.4.4应用实例303
    第9章车辆荷载时空分布识别与建模307
    9.1车辆荷载时空分布识别方法307
    9.1.1二值图像形态学方法308
    9.1.2车辆图像识别310
    9.1.3车辆定位318
    9.2车辆荷载随机场建模320
    9.2.1马尔科夫随机场理论基础321
    9.2.2联合树算法323
    9.2.3车辆荷载随机场模型326
    9.3应用实例328
    9.3.1车辆荷载识别328
    9.3.2车辆荷载建模330
    第10章基于监测数据的主梁安全评定方法334
    10.1应变监测数据特征334
    10.1.1钢筋混凝土桥梁334
    10.1.2钢桥337
    10.2应变监测数据的解耦340
    10.2.1趋势项应变解耦方法340
    10.2.2混凝土收缩与徐变应变解耦方法343
    10.3基于监测应变的结构承载力极限状态安全评定348
    10.3.1关键构件荷载效应概率模型349
    10.3.2关键构件抗力衰减模型358
    10.3.3结构承载力极限状态可靠度评估方法359
    10.3.4应用实例361
    10.4基于监测应变的钢箱梁疲劳累积损伤评估方法365
    10.4.1钢材疲劳累积损伤基础理论365
    10.4.2钢箱梁构造细节疲劳寿命曲线368
    10.4.3钢箱梁疲劳荷载效应谱计算方法370
    10.4.4应用实例371
    第11章基于监测数据的拉索安全评定方法373
    11.1拉索时变索力识别方法374
    11.1.1索力监测数据特征374
    11.1.2时不变索力识别方法379
    11.1.3时变索力识别方法381
    11.1.4算例分析386
    11.2承载力极限状态评估方法396
    11.2.1拉索时变抗力模型396
    11.2.2荷载效应极值模型402
    11.2.3时变承载力极限状态安全评定404
    11.2.4应用实例406
    11.3基于S-N曲线的拉索疲劳累积损伤评估与寿命预测方法416
    11.3.1高强钢丝疲劳寿命预测模型416
    11.3.2拉索疲劳寿命预测模型418
    11.3.3拉索疲劳荷载效应谱计算方法419
    11.3.4应用实例420
    11.4拉索疲劳累积损伤与寿命预测的断裂力学方法432
    11.4.1高强钢丝断裂力学基本理论432
    11.4.2高强钢丝腐蚀疲劳退化模型434
    11.4.3拉索疲劳寿命评估方法437
    第12章大跨度桥梁风和风效应监测数据分析439
    12.1风与风效应监测系统设计方法439
    12.2风场监测数据分析方法442
    12.2.1平均风速442
    12.2.2风速剖面443
    12.2.3脉动风湍流强度与湍流积分尺度444
    12.2.4脉动风速功率谱446
    12.2.5阵风因子448
    12.2.6脉动风的空间相关性449
    12.2.7风场展向不均匀性449
    12.3风压场与绕流场监测数据分析方法449
    12.3.1风压场449
    12.3.2绕流场451
    12.4主梁涡激振动监测数据分析方法455
    12.4.1涡激振动判别条件456
    12.4.2涡激振动特征456
    12.5主梁抖振响应监测数据分析方法458
    12.6斜拉索涡激振动监测数据分析方法459
    12.6.1平均风速的空间变换关系459
    12.6.2斜拉索涡激振动起振风况分析459
    12.6.3斜拉索涡激振动参与模态的估计方法461
    12.7应用实例1462
    12.7.1某大跨度悬索桥风与风效应监测系统462
    12.7.2风场监测数据与分析466
    12.7.3风压场与绕流场监测数据与分析472
    12.7.4主梁涡激振动监测数据与分析477
    12.7.5主梁抖振监测数据分析480
    12.8应用实例2484
    12.8.1某大跨度斜拉桥及斜拉索涡激振动监测系统概况484
    12.8.2斜拉索涡激振动监测数据分析485
    第13章结构地震反应监测数据分析与损伤识别489
    13.1地震地面运动和结构地震反应监测数据分析489
    13.1.1地震地面运动工程特性分析490
    13.1.2结构地震损伤快速分析方法501
    13.2基于数据驱动的结构非线性损伤定位方法508
    13.2.1识别方法508
    13.2.2算例分析511
    13.3结构非线性模型参数识别方法520
    13.3.1识别方法520
    13.3.2算例分析522
    13.4基于完备集的结构非线性模型及其参数识别方法530
    13.4.1识别方法530
    13.4.2算例分析533
    13.5基于非完备集的结构非线性模型及其参数识别方法535
    13.5.1识别方法535
    13.5.2算例分析539
    第14章结构健康监测的Benchmark模型543
    14.1健康监测系统概况543
    14.1.1工程概况543
    14.1.2结构健康监测系统544
    14.2结构修正有限元模型547
    14.2.1初始有限元模型548
    14.2.2修正有限元模型551
    14.3拉索状态评估Benchmark问题551
    14.3.1拉索索力监测数据551
    14.3.2退役高强钢丝和斜拉索疲劳特性552
    14.3.3拉索状态评估Benchmark问题554
    14.4主梁损伤识别Benchmark问题554
    14.4.1监测数据555
    14.4.2检测数据558
    14.4.3损伤识别Benchmark问题558
    参考文献560
    Contents
    Preface
    Main Symbols
    Introduction
    Chapter 1Basic knowledge of signal processing86
    1.1Fourier transform86
    1.2Discrete Fourier transform and fast Fourier transform of signal87
    1.2.1Discrete Fourier transform87
    1.2.2Fast Fourier transform88
    1.2.3Picket fence effect88
    1.2.4Frequency resolution89
    1.2.5Energy leakage and window-added90
    1.3Sampling theory93
    1.4Laplace transform96
    1.4.1Definition of Lappace transform96
    1.4.2Function differential property of Lappace transform98
    1.5Filtering and denosing of signal98
    1.5.1Filtering99
    1.5.2Denosing102
    Chapter 2Compressive sampling104
    2.1Principle of compressive sampling104
    2.1.1Problem of compressive sampling104
    2.1.2Sparsity105
    2.1.3Measurement matrix106
    2.1.4Optimizaiton algorithm106
    2.2Case study108
    2.2.1Compressive sampling of accleration data of bridge108
    2.2.2Compressive sampling of accleration data of large span spatial structure117
    Chapter 3Lost data recovery for wireless data transmission121
    3.1Data loss reasons for wireless data transmission121
    3.2Algorithm for lost data recovery126
    3.2.1Lost data recovery without noise126
    3.2.2Lost data recovery with noise127
    3.3Case study128
    3.3.1Data lost recovery for monitored data of bridge128
    3.3.2Data lost recovery for monitored data of large span spatial structure140
    Chapter 4Structural modal analysis144
    4.1Frequency response function and impulse response function of single degree-of-freedom structure144
    4.1.1Linear viscous damping dynamic system144
    4.1.2Linear structure damping dynamic system148
    4.1.3Characteries of frequency response function curve150
    4.1.4Frequency response function and impulse response function under different loads155
    4.2Frequency response function of multiple degree-of-freedom structure159
    4.3Frequency response function and impulse response function of multiple degree-of-freedom structure163
    4.3.1Modal parameters of multiple degree-of-freedom structure163
    4.3.2Frequency response function and impulse response function of multiple degree-of-freedom structure166
    4.3.3Example168
    4.4Complex modal frequency response function of multiple degree-of-freedom structure174
    4.4.1Linear structure damping dynamic system174
    4.4.2Linear viscous damping dynamic system179
    4.4.3Complex modal properties180
    4.4.4Frequency response function and impulse response function of complex modal181
    4.4.5Example184
    Chapter 5Modal identification from ambient vibration of structure188
    5.1Frequency domain decomposition188
    5.2NExT and ERA192
    5.2.1NExT192
    5.2.2ERA195
    5.3Stochastic subspace identification202
    5.4Modal identification of bridge with ambient effects208
    5.4.1Principle component analysis208
    5.4.2Modelling by artifical neural network212
    5.5Case study214
    5.5.1Introduction of the structural health monitoring system214
    5.5.2Results of structural modal identification215
    5.5.3Model of the ambient effects and modal parameters222
    Chapter 6Structural damage identification233
    6.1Modal-based structural damage identfication methods233
    6.1.1Frequency-based structural damage identfication methods233
    6.1.2Mode shape-based structural damage identfication methods235
    6.2Structural damage identification based on information fusion238
    6.2.1D-S evidence theory238
    6.2.2Bayesian theory241
    6.2.3Comparison of D-S evidence theory and Bayesian theory242
    6.2.4Structural damage identification based on information fusion246
    6.3Example249
    6.3.1Finite element model of bridge249
    6.3.2Results of structural damage identification250
    Chapter 7Structural model updating255
    7.1Structural model updating based on modal sensitivity analysis255
    7.1.1Modal sensitivity analysis255
    7.1.2Structural parameters estimation257
    7.2Bayesian model updating for structure261
    7.3Case study264
    7.3.1Substructure characteristics of cable stayed bridges264
    7.3.2Updating structural parameters268
    7.3.3Updated structural parameters270
    Chapter 8Extreme value distribution and fatigue load spectrum of vehicle loads273
    8.1Characteristics of monitored vehicle loads273
    8.2Stochastic process and corresponding extreme value distribution277
    8.2.1Filtered Poisson process and EV distribution277
    8.2.2Filtered Weibull process and EV distribution279
    8.2.3Stationary Binomial process and EV distribution279
    8.2.4Renewal process and EV distribution281
    8.3Extreme value distribution modelling based on monitored vehicle loads284
    8.3.1Truncated distribution model284
    8.3.2Probability distribution model of inter-arrival times287
    8.3.3Numerical simulation method of EV distribution288
    8.3.4Case study291
    8.4Fatigue spectrum modelling of vehicle loads298
    8.4.1Vehicles classification in China298
    8.4.2Fatigue load spectrum300
    8.4.3Logistic method of traffic prediction302
    8.4.4Case study303
    Chapter 9Identification and modeling of the spatio-temporal distribution of vehicle loads307
    9.1Identification of spatio-temporal distribution of vehicle loads307
    9.1.1Morphological processing of the binary image308
    9.1.2Vehicle image identification310
    9.1.3Vehicle localization318
    9.2The random field model of vehicle loads320
    9.2.1Introduction to Markov random field321
    9.2.2Junction tree algorithm323
    9.2.3The random field model of vehicle loads on bridge deck326
    9.3Case study328
    9.3.1Vehicle load identification328
    9.3.2Vehicle load modeling330
    Chapter 10Structural safety evaluation of girder based on monitored data334
    10.1Characteristics of monitored strain334
    10.1.1Reinforced concrete bridge334
    10.1.2Steel bridge337
    10.2Decoupling of monitored strain340
    10.2.1Decoupling of trend strain340
    10.2.2Decoupling of shrinkage and creep for concrete343
    10.3Ultimate limit state assessment based on monitoring strain348
    10.3.1Probability distribution of load effects for key members349
    10.3.2Resistance deterioration model358
    10.3.3Reliability evaluation method of ultimate limit state359
    10.3.4Case study361
    10.4Fatigue damage assessment of steel box girder based on monitored strain365
    10.4.1Basic theory of cumulative fatigue damage365
    10.4.2Fatigue life curve of structural details in steel box girder368
    10.4.3Fatigue spectrum of monitored load effects370
    10.4.4Case study371
    Chapter 11Safety assessment for cables based on monitored data373
    11.1Time variant cable force identification method374
    11.1.1Monitored cable forces characteristics374
    11.1.2Time invariant cable force identification method379
    11.1.3Time variant cable force identification method381
    11.1.4Example386
    11.2Ultimate limit state evaluation396
    11.2.1Resistance model of cables396
    11.2.2Extreme value distribution of load effect402
    11.2.3Time dependent ultimate limit state evaluation of cables404
    11.2.4Case study406
    11.3Fatigue damage assessment and life prediction of cables based on S-N curve416
    11.3.1Fatigue life prediction model of high strength steel wires416
    11.3.2Fatigue life prediction model of cables418
    11.3.3Fatigue load spectrum based on monitored cable forces419
    11.3.4Case study420
    11.4Cumulative fatigue damage assessment and life prediction of cables based on linear elastic fracture mechanics432
    11.4.1Basic theory of linear elastic fracture mechanics for steel wire432
    11.4.2Corrosion fatigue degradation model of steel wires434
    11.4.3Fatigue life assessment of Cables437
    Chapter 12The monitoring data analysis method of the wind and wind effects of large-span bridges439
    12.1The design method of wind and wind effects monitoring system439
    12.2The analysis method of wind-field monitoring data442
    12.2.1Mean wind speed442
    12.2.2Wind profile443
    12.2.3Turbulence intensity and integral scale of fluctuating wind444
    12.2.4Power spectrum of fluctuating wind446
    12.2.5Gust wind factor448
    12.2.6Spatial correlation of fluctuating wind449
    12.2.7Span-wise inhomogeneity of wind field449
    12.3The data analysis method of wind pressure field and flow field around bluff bodies449
    12.3.1Wind pressure field449
    12.3.2Flow filed around bluff bodies451
    12.4The data analysis method of vortex-induced vibrations of girders455
    12.4.1The identification criterion of vortex-induced vibrations456
    12.4.2Characteristics of vortex-induced vibrations456
    12.5The data analysis method of buffeting responses of girders458
    12.6The data analysis method of vortex-induced vibrations of stayed cables459
    12.6.1Spatial transformation of wind velocity459
    12.6.2The critical wind condition of vortex-induced vibrations of stayed cables459
    12.6.3A method of estimating participation modes of vortex-induced vibrations461
    12.7Case study 1462
    12.7.1The wind and wind effects monitoring system of a suspension bridge462
    12.7.2Wind field466
    12.7.3Wind-pressure field and flow field around the box girder472
    12.7.4Vortex induced vibrations of the box girder477
    12.7.5Buffeting responses of the box girder480
    12.8Case study 2484
    12.8.1Field monitoring system of a cable-stayed bridge484
    12.8.2The data analysis of vortex-induced vibrations of stayed cables485
    Chapter 13The analysis of monitored earthquake ground motion and structural seismic response data and structural damage detection489
    13.1The analysis of monitored earthquake ground motion and structural seismic response data489
    13.1.1Engineering characteristics of earthquake ground motion490
    13.1.2Fast and practical method of structural seismic damage detection501
    13.2Data-driven based structural nonlinear damage location method508
    13.2.1Detection method508
    13.2.2Example511
    13.3Identification method for the parameters of structural nonlinear model520
    13.3.1Identification method520
    13.3.2Example522
    13.4Identification method for structural nonlinear model and its parameter based on complete observing set530
    13.4.1Identification method530
    13.4.2Example533
    13.5Identification method for structural nonlinear model and its parameter based on incomplete observing set535
    13.5.1Identification method535
    13.5.2Example539
    Chapter 14Benchmark model for structural health monitoring543
    14.1General introduction of the bridge and structural health monitoring system543
    14.1.1General introduction of the bridge543
    14.1.2Structural health monitoring system544
    14.2Initial and updated finite element model547
    14.2.1Initial finite element model548
    14.2.2Updated finite element model551
    14.3Condition assessment benchmark problem for cables551
    14.3.1Monitored data of cable forces551
    14.3.2Fatigue properties of replaced steel wires and cables552
    14.3.3Condition assessment benchmark problem for cables554
    14.4Damage identification benchmark problem for girder554
    14.4.1Monitored datasets555
    14.4.2Testing datasets558
    14.4.3Damage identification benchmark problem for girder558
    References560
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证