0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 社科/经管/语言/法律 > 法学 > 椭圆方程有限元方法的整体超收敛及其应用(英文版)

销售排行榜

椭圆方程有限元方法的整体超收敛及其应用(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
椭圆方程有限元方法的整体超收敛及其应用(英文版)
  • 书号:9787030334794
    作者:李子才,黄宏财,严宁宁
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:344
    字数:400
    语种:
  • 出版社:科学出版社
    出版时间:2015-07-14
  • 所属分类:法学
  • 定价: ¥88.00元
    售价: ¥69.52元
  • 图书介质:
    按需印刷 电子书

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

This book covers the advanced study on the global superconvegence of elliptic equations in both theory and computation,where the main materials are adapted from our journal papers published.A deep and rather completed analysis of global supperconvergence is explored for bilinear,biquadratic,Adini's and bi-cubic Hermite elements,as well as for the finite difference method.Poisson's and the biharmonic equations are included,and eigenvalue and semi-linear problems are discussed.The singularity problems,blending problems,coupling techniques,a posteriori interpolant techniques,and some physical and engineering problems are studied.Numerical examples are proviede for verification of the analysis,and other numerical experiments can be found from our publications.This book has also summarized some important results of Lin,his colleagues and others.This book is written for researchers and graduate students of mathematics and engineering to study and apply the global superconvergence for numerical PDE.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Preface
    Acknowledgements
    Chapter 1 Basic Approaches
    1.1 Introduction
    1.2 Simplified Hybrid Combined Methods
    1.3 Basic Theorem for Global Superconvergence
    1.4 Bilinear Elements
    1.5 Numerical Experiments
    1.6 Concluding Remarks
    Chapter 2 Adini's Elements
    2.1 Introduction
    2.2 Adini's Elements
    2.3 Global Superconvergence
    2.3.1 New error estimates
    2.3.2 A posteriori interpolant formulas
    2.4 Proof of Theorem 2.3.1
    2.4.1 Preliminary lemmas
    2.4.2 Main proof of Theorem 2.3.1
    2.5 Stability Analysis
    2.6 New Stability Analysis via Effective Condition Number
    2.6.1 Computational formulas
    2.6.2 Bounds of effective condition number
    2.7 Numerical Experiments and Concluding Remarks
    Chapter 3 Biquadratic Lagrange Elements
    3.1 Introduction
    3.2 Biquadratic Lagrange Elements
    3.3 Global Superconvergence
    3.3.1 New error estimates
    3.3.2 Proof of Theorem 3.3.1
    3.3.3 Proof of Theorem 3.3.2
    3.3.4 Error bounds for Q8 elements
    3.4 Numerical Experiments and Discussions
    3.4.1 Global superconvergence
    3.4.2 Special case of h=k and f_xxyy=0
    3.4.3 Comparisons
    3.4.4 Relation between u_h and ū^*_h
    3.5 Concluding Remarks
    Chapter 4 Simplified Hybrid Method for Motz's Problems
    4.1 Introduction
    4.2 Simplified Hybrid Combined Methods
    4.3 Lagrange Rectangular Elements
    4.4 Adini's Elements
    4.5 Concluding Remarks
    Chapter 5 Finite Difference Methods for Singularity Problems
    5.1 Introduction
    5.2 The Shortley-Weller Difference Approximation
    5.3 Analysis for u^D_h with no Error of Divergence Integration
    5.4 Analysis for u_h with Approximation of Divergence Integration
    5.5 Numerical Verification on Reduced Convergence Rates
    5.5.1 The model on stripe domains
    5.5.2 The Richardson extrapolation and the least squares method
    5.6 Concluding Remarks
    Chapter 6 Basic Error Estimates for Biharmonic Equations
    6.1 Introduction
    6.2 Basic Estimates for ∫∫_Ω(u-u_I)_xxv_xxds
    6.3 Basic Estimates for ∫∫_Ω(u-u_I)_xyv_xyds
    6.4 New Estimates for ∫∫_Ω(u-u_I)_xyv_xyds for Uniform Rectangular Elements
    6.5 New Estimates for ∫∫_Ω(u-u_I)_xxv_yyds
    6.6 Main Theorem of Global Superconvergence
    6.7 Concluding Remarks
    Chapter 7 Stability Analysis and Superconvergence of Blending Problems
    7.1 Introduction
    7.2 Description of Numerical Methods
    7.3 Stability Analysis
    7.3.1 Optimal convergence rates and the uniform V^0_h-elliptic inequality
    7.3.2 Bounds of condition number
    7.3.3 Proof for Theorem 7.3.4
    7.4 Global Superconvergence
    7.5 Numerical Experiments and Other Kinds of Superconvergence
    7.5.1 Verification of the analysis in Section 7.3 and Section 7.4
    7.5.2 New superconvergence of average nodal solutions
    7.5.3 Superconvergence of L^∞-norm
    7.5.4 Global superconvergence of the a posteriori interpolant solutions
    7.6 Concluding Remarks
    Chapter 8 Blending Problems in 3D with Periodical Boundary Conditions
    8.1 Introduction
    8.2 Biharmonic Equations
    8.2.1 Description of numerical methods
    8.2.2 Global superconvergence
    8.3 The BPH-FEM for Blending Surfaces
    8.4 Optimal Convergence and Numerical Stability
    8.5 Superconvergence
    Chapter 9 Lower Bounds of Leading Eigenvalues
    9.1 Introduction
    9.1.1 Bilinear element Q_1
    9.1.2 Rotated Q_1 element (Q^rot_1)
    9.1.3 Extension of rotated Q_1 element (EQ^rot_1)
    9.1.4 Wilson's element
    9.2 Basic Theorems
    9.3 Bilinear Elements
    9.4 Q^rot_1 and EQ^rot_1 Elements
    9.4.1 Proof of Lemma 9.4.1
    9.4.2 Proof of Lemma 9.4.2
    9.4.3 Proof of Lemma 9.4.3
    9.4.4 Proof of Lemma 9.4.4
    9.5 Wilson's Element
    9.5.1 Proof of Lemma 9.5.1
    9.5.2 Proof of Lemma 9.5.2
    9.5.3 Proof of Lemma 9.5.3 and Lemma 9.5.4
    9.6 Expansions for Eigenfunctions
    9.7 Numerical Experiments
    9.7.1 Function ρ=1
    9.7.2 Function ρ≠0
    9.7.3 Numerical conclusions
    Chapter 10 Eigenvalue Problems with Periodical Boundary Conditions
    10.1 Introduction
    10.2 Periodic Boundary Conditions
    10.3 Adini's Elements for Eigenvalue Problems
    10.4 Error Analysis for Poisson's Equation
    10.5 Superconvergence for Eigenvalue Problems
    10.6 Applications to Other Kinds of FEMs
    10.6.1 Bi-quadratic Lagrange elements
    10.6.2 Triangular elements
    10.7 Numerical Results
    10.8 Concluding Remarks
    Chapter 11 Semilinear Problems
    11.1 Introduction
    11.2 Parameter-Dependent Semilinear Problems
    11.3 Basic Theorems for Superconvergence of FEMs
    11.4 Superconvergence of Bi-p(≥2)-Lagrange Elements
    11.5 A Continuation Algorithm Using Adini's Elements
    11.6 Conclusions
    Chapter 12 Epilogue
    12.1 Basic Framework of Global Superconvergence
    12.2 Some Results on Integral Identity Analysis
    12.3 Some Results on Global Superconvergence
    Bibliography
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证