0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 材料工程 > Intrinsic Structures and Properties of Energetic Materials(含能材料的本征结构与性能)

相同作者的商品

相同语种的商品

销售排行榜

浏览历史

Intrinsic Structures and Properties of Energetic Materials(含能材料的本征结构与性能)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Intrinsic Structures and Properties of Energetic Materials(含能材料的本征结构与性能)
  • 书号:9787030760869
    作者:张朝阳,黄静,布汝朋
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:520
    字数:600000
    语种:en
  • 出版社:科学出版社
    出版时间:2024-06-01
  • 所属分类:材料工程
  • 定价: ¥269.00元
    售价: ¥174.85元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书系统介绍了含能材料的本征结构与性能,包括如下内容:含能材料本征结构的定义与内涵,含能晶体分类,分子模拟方法在含能材料本征结构中的应用,含能分子&含能单组分分子晶体,含能分子晶体的多晶型与晶型转变,含能离子晶体,含能共晶,含能原子晶体、含能金属晶体和含能混合型晶体,氢键、氢转移与卤键,含能晶体中的π 堆积和低感高能材料的晶体工程。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Overview 1
    1.1 Energetic materials 1
    1.2 Intrinsic structures of energetic materials 6
    1.3 Benefits of the introduction of intrinsic structures 11
    1.4 Intention and organization of this book 14
    References 14
    2 Category of energetic crystals 17
    2.1 Introduction 17
    2.2 Criterion for categorizing energetic crystals 18
    2.2.1 Primary constituent part 18
    2.2.2 Type of energetic crystals 22
    2.3 Category of energetic crystals 23
    2.3.1 Energetic molecular crystal 23
    2.3.2 Energetic ionic crystal 30
    2.3.3 Energetic atomic crystal 33
    2.3.4 Energetic metallic crystal 34
    2.3.5 Energetic mixed-type crystal 35
    2.4 Understanding of energetic crystals 37
    2.4.1 Relationship between interactions of PCPs and crystal stability 37
    2.4.2 Relationship between crystal types and energy content 40
    2.5 Conclusions and outlooks 40
    References 41
    3 Application of molecular simulation methods in treating intrinsic structures of energetic materials 47
    3.1 Introduction 47
    3.1.1 Weight of molecular simulation in energetic material researches 48
    3.1.2 Application of molecular simulation 50
    3.2 Quantum chemical methods for treating energetic molecules 52
    3.2.1 Overview on quantum chemical methods 53
    3.2.2 Description for geometric structure 56
    3.2.3 Description for electronic structure 57
    3.2.4 Description for energetics 59
    3.2.5 Description for reactivity 61
    3.3 Dispersion-corrected DFT methods and their application 62
    3.3.1 Density prediction 65
    3.3.2 Geometric prediction 68
    3.3.3 Lattice energy prediction 69
    3.3.4 Comparison for computation efficiency 71
    3.4 Molecular FF methods and their application 73
    3.4.1 Classic FFs and their application 74
    3.4.2 Consistent FFs and their application 78
    3.4.3 Reactive force field and their application 79
    3.5 Hirshfeld surface analysis method and its application 81
    3.5.1 Principle 81
    3.5.2 Description for intermolecular interaction 85
    3.5.3 Description for a same molecule in various crystal environments 90
    3.5.4 Description for a same ion in various crystal environments 92
    3.5.5 Predictions for the shear sliding characteristic and impact
    sensitivity 93
    3.5.6 Summary of advantages and disadvantages of the Hirshfeld surface method 96
    3.6 Codes and database applied for energetic molecules and crystals 96
    3.6.1 Gaussian 96
    3.6.2 Multiwfn 97
    3.6.3 VASP 98
    3.6.4 Materials Studio 99
    3.6.5 DFTB+ 102
    3.6.6 CP2K 103
    3.6.7 LAMMPS 104
    3.6.8 COSMOlogic 105
    3.6.9 CrystalExplorer 105
    3.6.10 CSD 106
    3.7 Conclusions and outlooks 107
    References 107
    4 Energetic molecules and energetic single-component molecular crystals 127
    4.1 Introduction 127
    4.2 Traditional energetic molecular crystals 128
    4.2.1 Energetic nitro compounds 128
    4.2.2 Energetic conjugated N-heterocyclic compounds 134
    4.2.3 Energetic organic azides 144
    4.2.4 Energetic compounds with different heat resistance 145
    4.2.5 Energetic compounds with different impact sensitivity 148
    4.3 Energetic halogen compounds 150
    4.3.1 Energetic fluorine compounds 150
    4.3.2 Energetic compounds with chlorine, bromine, or iodine 153
    4.4 Entropy explosives: energetic peroxides 154
    4.5 Full nitrogen molecules 156
    4.6 Conclusions and outlooks 163
    References 163
    5 Polymorphism and polymorphic transition in energetic molecular crystals 175
    5.1 Introduction 175
    5.2 Polymorphism and polymorphic transition 176
    5.2.1 Polymorphism 176
    5.2.2 Polymorphic transition 176
    5.3 Factors influencing the polymorphic transition 180
    5.3.1 Crystal quality 180
    5.3.2 Additive 181
    5.4 Polymorph-reduced differences in structure and energetics 183
    5.4.1 Molecular structure 183
    5.4.2 Molecular packing 186
    5.4.3 Morphology 191
    5.4.4 Energetics 192
    5.4.5 Detonation property 196
    5.5 Polymorph-dependent mechanism of thermal decomposition 197
    5.5.1 CL-20 197
    5.5.2 HMX 201
    5.6 Polymorph transition-induced low impact sensitivity of FOX-7 206
    5.6.1 Stacking structures of the FOX-7 polymorphs 207
    5.6.2 Sliding characteristics of the polymorphs of FOX-7 208
    5.6.3 Correlation between the low impact sensitivity of FOX-7 and its heat-induced polymorphic transition 214
    5.7 Strategies for controlling polymorphic transition 215
    5.7.1 Recrystallization 215
    5.7.2 Coating crystal 215
    5.7.3 Adding additive 216
    5.8 Conclusions and outlooks 216
    References 217
    6 Energetic ionic crystals 227
    6.1 Introduction 227
    6.2 Composition and category 227
    6.2.1 Composition of energetic ionic crystals 227
    6.2.2 Category of energetic ionic crystals 229
    6.3 Volumetric and electric variabilities of constituent ions 230
    6.3.1 Volumetric variability 230
    6.3.2 Electric variability 232
    6.4 Packing structure and intermolecular HB 234
    6.4.1 Packing structure 234
    6.4.2 Intermolecular HB 236
    6.4.3 Consequence of strengthened HB 245
    6.5 Energetic inorganic ionic crystals 246
    6.6 Energetic organic ionic crystals 250
    6.6.1 Ionic crystals containing tetrazole derivative 250
    6.6.2 Ionic crystals containing triazole derivative 254
    6.6.3 Other energetic organic ionic crystals 256
    6.7 Conclusions and outlooks 259
    References 260
    7 Energetic cocrystals 265
    7.1 Introduction 265
    7.2 Redefinition and intension of the term cocrystal 268
    7.2.1 Insufficiency of the existent definitions and classifications 268
    7.2.2 History of cocrystal and its relatives 273
    7.2.3 Redefinition of cocrystal with a broader intension 275
    7.3 Component, intermolecular interaction, and packing structure of energetic cocrystal 276
    7.3.1 CL-20-based cocrystals 277
    7.3.2 HMX-based cocrystals 291
    7.3.3 EDNA, BTATz, DNPP, aTRz, BTNMBT, and BTO-based cocrystals 292
    7.3.4 TNT, DNBT, DNAN, and HNS-based energetic cocrystals 293
    7.3.5 BTF-based energetic cocrystals 294
    7.3.6 TXTNB-based cocrystals 295
    7.3.7 Heterocycle molecules-based cocrystals 297
    7.4 Thermodynamics for the formation of energetic cocrystal 297
    7.4.1 Calculation methods 298
    7.4.2 Thermodynamic parameters 299
    7.5 Property and performance of energetic cocrystal 303
    7.5.1 Density, and detonation velocity and pressure 303
    7.5.2 Thermal stability and impact sensitivity 307
    7.5.3 Reactivity: a case of CL-20/HMX 310
    7.6 Conclusions and outlooks 314
    References 317
    8 Energetic atomic crystals, energetic metallic crystals, and energetic mixed-type crystals 329
    8.1 Introduction 329
    8.2 Energetic atomic crystals 330
    8.2.1 Polymeric nitrogen 330
    8.2.2 Polymeric CO and CO2 336
    8.3 Energetic metallic crystals 339
    8.3.1 Metallic hydrogen 339
    8.3.2 Metallic nitrogen 343
    8.4 Energetic mixed-type crystals 344
    8.4.1 Energetic perovskites 344
    8.4.2 -based mixed-type crystals 346
    8.4.3 Other mixed-type cocrystals 348
    8.5 Conclusions and outlooks 353
    References 354
    9 Hydrogen bonding, hydrogen transfer, and halogen bonding 359
    9.1 Introduction 359
    9.2 Hydrogen bonding 360
    9.2.1 Hydrogen bonding in energetic homogeneous molecular crystals 362
    9.2.2 Hydrogen bonding in energetic cocrystals 367
    9.2.3 Hydrogen bonding in energetic ionic compounds 372
    9.3 Effects of hydrogen bonding 374
    9.3.1 On crystal packing 374
    9.3.2 On impact sensitivity 377
    9.4 Hydrogen transfer 377
    9.4.1 Intramolecular H-transfer 378
    9.4.2 Hydrogen transfer in crystal 389
    9.5 Effect of H-transfer 397
    9.5.1 On thermal stability 397
    9.5.2 On impact sensitivity 411
    9.6 Halogen bonding 417
    9.7 Conclusions and outlooks 418
    References 419
    10 π-stacking in energetic crystals 431
    10.1 Introduction 431
    10.2 π-π stacking 432
    10.2.1 Energetic planar π-bonded molecules 432
    10.2.2 HB-aided π-π stacking 434
    10.2.3 Non-HB-aided π-π stacking 439
    10.2.4 Heat/pressure induced variation of π-π stacking 440
    10.3 n-π stacking 441
    10.3.1 Intension of n-π stacking 441
    10.3.2 n-π stacking structures 443
    10.3.3 Nature of n-π stacking: electrostatic interaction 446
    10.4 Comparison among n-π stacking, π-π stacking, and intermolecular HB 450
    10.5 Molecular structure-stacking mode relationship: a case of D2h and D3h molecules 451
    10.5.1 Data collection and verification of molecular stacking pattern 452
    10.5.2 Molecular structures and stacking patterns 453
    10.5.3 Intralayered intermolecular interactions 455
    10.5.4 Characteristics of D2h and D3h molecules stacked in the planar-layer mode 459
    10.6 Conclusions and outlooks 464
    References 465
    11 Crystal engineering for creating low sensitivity and high energy materials 471
    11.1 Introduction 471
    11.2 Energy-safety contradiction of energetic materials 472
    11.3 Crystal packing-impact sensitivity relationship of energetic materials 473
    11.4 Strategy to achieve high packing density 480
    11.4.1 Crystal structural data collection 482
    11.4.2 dm-PC contradiction of high density energetic compounds 483
    11.4.3 Influences of molecular composition and intermolecular interaction on density 488
    11.4.4 Strategy for increasing dc 491
    11.5 Strategy for creating LSHEMs 495
    11.5.1 Strategy for creating traditional low sensitivity energetic materials 495
    11.5.2 Strategy for creating low sensitive or desensitized energetic cocrystals 497
    11.5.3 Strategy for creating low sensitive or desensitized energetic ionic compounds 501
    11.6 Conclusions and outlooks 503
    References 503
    Appendix I Symbols and meanings 509
    Appendix II Abbreviations and full names of molecules 511
    Appendix III Crystal codes and full names 519
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证