0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 航空/航天 > 高超声速飞行器平稳滑翔动力学与制导(英)

相同语种的商品

浏览历史

高超声速飞行器平稳滑翔动力学与制导(英)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
高超声速飞行器平稳滑翔动力学与制导(英)
  • 书号:9787030716378
    作者:陈万春等
  • 外文书名:
  • 装帧:圆脊精装
    开本:小16(18k)
  • 页数:461
    字数:604000
    语种:en
  • 出版社:科学出版社
    出版时间:2022-03-01
  • 所属分类:
  • 定价: ¥280.00元
    售价: ¥221.20元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

高超声速飞行器具有航程远、飞行快、临近空间飞行、不易探测、机动能力强等优点,但由于再入速度快带来了高热流、末端制导精度不易满足等问题,为了克服这些问题,研究多过程约束和末端约束的制导技术至关重要,本书是以此背景而著。
  本书从平稳滑翔的概念和基本理论-运动学、动力学和控制方程-平稳滑翔弹道的动态特性-平稳滑翔弹道的设计-基于平稳滑翔理论的制导方法全面系统地介绍高超声速飞行器再入平稳机动滑翔动力学与制导技术,在理论深度和应用参考性方面有自己的特色。 主要内容包括:平稳滑翔再入动力学模型;平稳滑翔弹道动态特性;弹道阻尼控制技术;基于平稳滑翔的弹道优化技术;基于平稳滑翔的线性伪谱广义标控脱靶量制导;平稳滑翔弹道解析解;平稳机动滑翔突防弹道设计。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction 1
    1.1 Problem Description 1
    1.2 Research Significance 2
    1.3 Research Progress 4
    References 8
    2 Mathematical Fundamentals 11
    2.1 Regular Perturbation Method 11
    2.2 Singular Perturbation Method 13
    2.3 Spectral Decomposition Method 16
    2.3.1 Idempotent Matrix 16
    2.3.2 Spectral Decomposition Theorem 16
    2.3.3 Inference 17
    2.3.4 Example 19
    2.4 Pseudospectral Method 19
    2.4.1 Introduction of Method 19
    2.4.2 Pseudospectral Discrete Process 23
    2.5 Linear Gauss Pseudospectral Model Predictive Control 33
    References 38
    3 Mathematical Modeling for Hypersonic Glide Problem 41
    3.1 The Coordinate System Adopted in This Book 41
    3.1.1 Geocentric Inertial Coordinate System (I) 41
    3.1.2 Geographic Coordinate System (T) 41
    3.1.3 Orientation Coordinate System (O) 42
    3.1.4 Velocity Coordinate System (V) 42
    3.1.5 Half-Velocity Coordinate System (H) 42
    3.1.6 Body Coordinate System (B) 43
    3.2 Transformation Between Coordinate Systems 43
    3.2.1 Transformation Between the Orientation Coordinate System and the Half-Velocity Coordinate System 43
    3.2.2 Transformation Between the Velocity Coordinate System and the Half-Velocity Coordinate System 43
    3.2.3 Transformation Between the Velocity Coordinate System and the Body Coordinate System 44
    3.2.4 Transformation Between the Body Coordinate System and the Half-Velocity Coordinate System 45
    3.3 Dynamic Equations of Hypersonic Vehicle in Half-Velocity Coordinate System 45
    3.3.1 Dynamics Equations of the Center of Mass in Half-Velocity Coordinate System 45
    3.3.2 The Dynamic Equations of the Center of Mass of the Vehicle 48
    3.3.3 Dynamic Equations of Hypersonic Gliding Vehicle Based on BTT Control 48
    3.3.4 Dynamic Equations of Hypersonic Vehicle in Vertical Plane 49
    3.3.5 Atmospheric Model 50
    3.3.6 Aerodynamic Model 50
    3.3.7 The Stagnation Point Heat Flow,Overload and Dynamic Pressure 50
    4 Mathematical Description of Glide-Trajectory Optimization Problem 53
    4.1 Mathematical Description for Optimal Control Problem 53
    4.1.1 Performance Index of Optimal Control Problem 53
    4.1.2 Description of Optimal Control Problem 54
    4.1.3 The Minimum Principle 55
    4.1.4 Final Value Performance Index of Time-Invariant Systems 56
    4.1.5 Integral Performance Index of Time-Invariant Systems 57
    4.1.6 Optimal Control Problem with Inequality Constraints 58
    4.1.7 Methods for Solving Optimal Control Problems 58
    4.2 Mathematical Description of Optimal Control Problem for Hypersonic Vehicle Entry Glide 61
    4.2.1 Maximum Final Speed Problem 61
    4.2.2 Maximum Range Problem 62
    4.2.3 Shortest Time Problem 62
    4.2.4 Optimal Trajectory Problem with Heating Rate Constraint 63
    4.2.5 Optimal Trajectory Problem with Heating Rate and Load Factor Constraints 64
    5 Indirect Approach to the Optimal Glide Trajectory Problem 65
    5.1 Combined Optimization Strategy for Solving the Optimal Gliding Trajectory of Hypersonic Aircraft 67
    5.1.1 Mathematical Model of Hypersonic Gliding 67
    5.1.2 Necessary Conditions for Optimal Gliding Trajectory 68
    5.1.3 Solving Two-Point Boundary Value Problem by Combination Optimization Strategy 69
    5.1.4 Numerical Calculation Results 70
    5.1.5 Conclusion 73
    5.2 Trajectory Optimization of Transition Section of Gliding Hypersonic Flight Vehicle 74
    5.2.1 Aerodynamic Data for the Transition Section 74
    5.2.2 Unconstrained Trajectory of Maximum Terminal Velocity 75
    5.2.3 Heat Flow Constrained Trajectory of Maximum Terminal Velocity 76
    5.2.4 Solving the Two-Point Boundary Value Problem for the Transition Section 77
    5.2.5 Optimizing the Transition Trajectory with Direct Method 77
    5.2.6 Steps for Solving the Optimal Transition Trajectory 78
    5.2.7 Transitional Trajectory Obtained by Indirect Method 81
    5.3 The Maximum Range Gliding Trajectory of the Hypersonic Aircraft 84
    5.3.1 Guess Initial Values for Optimal Control Problem by Direct Method 84
    5.3.2 Indirect Method for Solving Optimal Control Problems 89
    5.3.3 The Maximum Range Gliding Trajectory of the Hypersonic Aircraft 94
    References 101
    6 Direct Method for Gliding Trajectory Optimization Problem 103
    6.1 Direct Method for Solving Optimal Control Problems 103
    6.2 Direct Shooting Method 104
    6.2.1 Direct Multiple Shooting Method 104
    6.2.2 Direct Method of Discrete Control 105
    6.2.3 Gradual Subdividing Optimization Strategy 106
    6.3 Direct Collocation Method 107
    6.3.1 General Form of Direct Collocation Method 107
    6.3.2 Direct Transcription 108
    6.3.3 Implicit Integral Method 109
    6.3.4 Solving Optimal Trajectory Problems with NLP 110
    6.4 Direct Collocating Method for Trajectory with Maximum Gliding Cross Range of Hypersonic Aircraft 111
    6.4.1 Mathematical Model 111
    6.4.2 Re-entry Flight Control Law with Given Angle of Attack Profile 113
    6.4.3 Solution of Maximum Cross Range Problem by Direct Collocation Method 113
    6.4.4 Optimization Example 116
    6.4.5 Summary 118
    6.5 Pseudospectral Method for the Optimal Trajectory of the Hypersonic Vehicle with the Longest Cross-Range 119
    6.5.1 Introduction of Pseudospectral Method 119
    6.5.2 Optimization Examples and Results 122
    7 Concept of Steady Glide Reentry Trajectory and Stability of Its Regular Perturbation Solutions 125
    7.1 Introduction 125
    7.2 Kinetic Equations 126
    7.3 Definition of the Steady Glide Trajectory 127
    7.4 Effects of Control Variable on SGT 128
    7.5 Effects of Initial Value on SGT 129
    7.6 Analytical Solution of SGT 129
    7.6.1 Altitude Dynamic Differential Equation 129
    7.6.2 Analytical Steady Glide Altitude 131
    7.6.3 Analytical Solutions of Flight-Path Angle and Vertical Acceleration 134
    7.7 Dynamic Characteristics of SGT 135
    7.7.1 Stability Analysis 135
    7.7.2 Natural Frequency and Damping 137
    7.8 Feedback Control of SGT 140
    7.8.1 Feedback Design 140
    7.8.2 Fixed-Damping Differential Feedback Method 144
    7.9 Conclusions 147
    References 147
    8 Analytical Solutions of Steady Glide Reentry Trajectory in Three Dimensions and Their Application to Trajectory Planning 149
    8.1 Introduction 149
    8.2 Mathematical Model 150
    8.2.1 Definition of Coordinate Frame 150
    8.2.2 Kinematic Equations 150
    8.2.3 Decoupling of Equations 152
    8.3 Analytical Solution of Glide Trajectory 153
    8.3.1 Analytical Solution of Altitude 153
    8.3.2 Analytical Solution of Range 154
    8.3.3 Analytical Solution of Heading Angle 154
    8.3.4 Analytical Solution of Longitude and Latitude 155
    8.3.5 Analytical Solution of Velocity 156
    8.3.6 Optimal Initial Glide Angle 157
    8.4 Simulation 157
    8.4.1 Comparison Between Analytical Solution and Numerical Integral 157
    8.4.2 Comparison with Bell Analytical Solution 157
    8.4.3 Application of Analytic Solutions in Trajectory Planning 160
    8.5 Summary 164
    References 164
    9 Trajectory Damping Control Technique for Hypersonic Glide Reentry 167
    9.1 Introduction 167
    9.2 Guidance Scheme 168
    9.2.1 Mathematical Proof 168
    9.2.2 Command Flight-Path Angle for L/Dmax 170
    9.2.3 Guidance Scheme for Range Maximization and Trajectory Damping Control 172
    9.2.4 Extended Guidance Scheme for Glide Range Control 173
    9.3 Hypersonic Vehicle Model 174
    9.4 Results and Discussion 176
    9.4.1 Performance of Guidance Scheme 176
    9.4.2 Application of the Extended Guidance Scheme 183
    9.5 Conclusions 189
    References 189
    10 Steady Glide Dynamic Modeling and Trajectory Optimization for High Lift-To-Drag Ratio Reentry Vehicle 191
    10.1 Introduction 191
    10.2 Dynamics and Vehicle Description 193
    10.2.1 Entry Dynamics 193
    10.2.2 Entry Trajectory Constraints 194
    10.2.3 Vehicle Description and Model Assumption 194
    10.3 Trajectory-Oscillation Suppressing Scheme 195
    10.3.1 Generic Theory for the Oscillation Suppressing Scheme 195
    10.3.2 Performance of the Trajectory-Oscillation Suppressing Scheme 197
    10.4 Steady Glide Dynamic Modeling and Trajectory Optimization 198
    10.4.1 Steady Glide Dynamic Modeling 199
    10.4.2 Hp-Adaptive Gaussian Quadrature Collocation Method 200
    10.4.3 Numerical Example of Trajectory Optimization Without Bank Reversal 201
    10.4.4 Numerical Example of Trajectory Optimization with Bank Reversal 205
    10.4.5 Verification of Feasibility for the Pseudospectral Solution 206
    10.5 Conclusion 209
    References 210
    11 Singular Perturbation Guidance of Hypersonic Glide Reentry 213
    11.1 Singular Perturbation Guidance for Range Maximization of a Hypersonic Glider 213
    11.1.1 Problem Formulation (Dimensionless Model) 213
    11.1.2 Reduced-Order System Solutions 215
    11.1.3 Slow-Boundary Layer Solutions 216
    11.1.4 Fast-Boundary Layer Solutions 218
    11.1.5 Simulation Results 220
    11.1.6 Comparison and Analysis 221
    11.2 Improved Singular Perturbation Guidance for Maximum Glide Range 225
    11.2.1 Dynamic Model and Solutions to the Reduced-Order System 226
    11.2.2 Boundary Layer Correction 227
    11.2.3 Slow Boundary-Layer Correction 227
    11.2.4 Fast Boundary-Layer Correction 228
    11.2.5 Guidance Law Derivation 228
    11.2.6 Simulation Results and Analyses 229
    11.3 Summary 232
    References 232
    12 3-D Reentry Guidance with Real-Time Planning of Reference Using New Analytical Solutions Based on Spectral Decomposition Method 233
    12.1 Introduction 233
    12.2 Equations of Motion 235
    12.3 Entry Trajectory Constraints 237
    12.3.1 Path Constraints 237
    12.3.2 Terminal Conditions 237
    12.4 Analytical Solutions to Hypersonic Gliding Problem 237
    12.4.1 Auxiliary Geocentric Inertial (AGI) Frame 237
    12.4.2 Linearization of the Equations of Motion 239
    12.4.3 Analytical Solutions 241
    12.4.4 Example for Accuracy Verification 245
    12.5 Entry Guidance 248
    12.5.1 Descent Phase 248
    12.5.2 Quasi-Equilibrium Glide Phase 249
    12.5.3 Altitude Adjustment Phase 260
    12.5.4 Results and Discussion 262
    12.5.5 Nominal Cases 262
    12.6 Conclusions 273
    Appendix 273
    References 275
    13 Omnidirecdonal Autonomous Reentry Guidance Based on 3-D Analytical Glide Formulae Considering Influence of Earth’s Rotation 277
    13.1 Introduction 277
    13.2 Entry Guidance Problem 280
    13.2.1 Equations of Motion 280
    13.2.2 Path Constraints 281
    13.2.3 Terminal Conditions 282
    13.3 Omnidirectional Autonomous Entry Guidance 282
    13.3.1 Overview 282
    13.3.2 Descent Phase 285
    13.33 Steady Glide Phase 286
    13.4 Altitude Adjustment Phase 300
    13.4.1 Correction of Baseline AOA Profile and Second Bank Reversal 300
    13.4.2 Baseline Bank Angle in AAP 304
    13.4.3 AOA and Bank Angle Commands in AAP 305
    13.5 Results and Discussion 306
    13.5.1 Nominal Cases 306
    13.5.2 Monte Carlo Simulations 309
    13.6 Conclusions 314
    Appendix 1: Generalized States of Motion 315
    Appendix 2: Generalized Aerodynamic Forces 318
    References 319
    14 Analytical Steady-Gliding Guidance Employing Pseudo-Aerodynamic Profiles 323
    14.1 Introduction 323
    14.2 Entry Guidance Problem 325
    14.2.1 Equations of Motion 325
    14.2.2 Path Constraints 326
    14.2.3 Terminal Conditions 327
    14.3 Analytical Entry Guidance Design 327
    14.3.1 Descent Phase 328
    14.3.2 Steady Glide Phase 328
    14.3.3 Altitude Adjustment Phase 344
    14.4 Results and Discussion 349
    14.4.1 Nominal Cases 349
    14.4.2 Monte Carlo Simulations 354
    14.5 Conclusions 361
    References 364
    15 Linear Pseudospectral Guidance Method for Eliminating General Nominal Effort Miss Distance 365
    15.1 Introduction 365
    15.2 Generic Theory of LGPMPC 366
    15.2.1 Linearization of Nonlinear Dynamic System and Formulation of Linear Optimal Control Problem 367
    15.2.2 Linear Gauss Pseudospectral Method 369
    15.2.3 Singularity of Differential Approximation Matrices for Different Pseudospctral Methods 374
    15.2.4 Boundary Control of Linear Gauss Pseudospctral Method 374
    15.2.5 Implementation of LGPMPC 375
    15.3 Application to Terminal Guidance 377
    15.3.1 Terminal Guidance Problem and Three-Dimensional Mode 377
    15.3.2 Initial Guess and Target Model 379
    15.3.3 Cases for Target with Straight-Line Movements 380
    15.3.4 Comparison with Adaptive Terminal Guidance 384
    15.4 Conclusion 386
    Appendix 387
    References 388
    16 Linear Pseudospectral Reentry Guidance with Adaptive Flight Phase Segmentation and Eliminating General Nominal Effort Miss Distance 389
    16.1 Introduction 389
    16.2 Entry Dynamics, Entry Trajectory Constraints and Vehicle Description 391
    16.2.1 Entry Dynamics 391
    16.2.2 Entry Trajectory Constraints 392
    16.2.3 Vehicle Description and Model Assumption 393
    16.2.4 Auxiliary Geocentric Inertial Frame and Emotion Dynamics 393
    16.3 Linear Pseudospectral Model Predictive Entry Guidance 394
    16.3.1 Descent Phase Guidance 395
    16.3.2 Glide Phase Entry Guidance 395
    16.3.3 Terminal Adjustment Phase 411
    16.3.4 Implementation of the Proposed Method 416
    16.4 Numeric Results and Discussion 417
    16.4.1 Normal Cases for Various Destinations 417
    16.4.2 Monte Carlo Simulations 423
    16.5 Conclusion 430
    References 431
    17 Trajectory-shaping Guidance with Final Speed and Load Factor Constraints 433
    17.1 Introduction 433
    17.2 Equations of Motion 435
    17.3 Guidance Law Overview 437
    17.4 Trajectory Shaping Guidance 437
    17.4.1 Guidance Form 437
    17.4.2 Generalized Closed Form Solutions for TSG 438
    17.4.3 Stability Domain of Guidance Coefficients 448
    17.5 Final Speed Control Scheme 452
    17.6 Model of CAV-H 453
    11.1 Results and Discussion 454
    17.8 Conclusions 460
    References 460
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证