0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 机械工程 > 金属磁记忆检测技术及其再制造应用(英文版)

相同语种的商品

浏览历史

金属磁记忆检测技术及其再制造应用(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
金属磁记忆检测技术及其再制造应用(英文版)
  • 书号:9787030702487
    作者:黄海鸿,钱正春,刘志峰
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:240
    字数:330000
    语种:en
  • 出版社:科学出版社
    出版时间:2021-11-01
  • 所属分类:
  • 定价: ¥160.00元
    售价: ¥126.40元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书旨在将一种新型的无损检测方法,即金属磁记忆技术引入到再制造工程领域,为再制造产品的质量控制提供指导。书中详细介绍了金属磁记忆的研究现状及其在再制造中的应用前景,阐述了如何利用磁记忆信号检测再制造之前毛坯的损伤程度,分析了不同载荷形式和环境变化对检测结果的影响;并且对再制造之后零部件修复质量开展了系统评价,建立了磁记忆信号特征与再制造涂层及其界面性能之间的映射关系;最后根据金属磁记忆基本原理开发了一套高精度的磁信号检测设备,并将书中总结提出的磁记忆理论模型、分析方法以及检测结果推广到汽车驱动桥壳、液压缸、发动机曲轴等零部件的实际再制造过程中,为金属磁记忆在再制造工程中的应用奠定坚实基础。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Applications for Remanufacturing Problems and Prospects
    Part I Introduction to the Metal Magnetic Memory (MMM) Technique
    1 Nondestructive Testing for Remanufacturing 3
    1.1 Motivations 3
    1.2 Conventional Nondestructive Testing Techniques 5
    1.3 MMM Technique 5
    1.4 Organization of This Book 7
    References 8
    2 Theoretical Foundation of the MMM Technique 9
    2.1 Background 10
    2.2 Microscopic Mechanism 13
    2.3 Macroscopic Theoretical Model 13
    2.3.1 Magnetomechanical Model 17
    2.3.2 Magnetic Charge Model 19
    2.3.3 First Principle Theory 23
    References 23
    3 State of the Art of the MMM Technique 25
    3.1 Historical Background 25
    3.2 Theoretical Research 26
    3.3 Experimental Research 27
    3.4 Standard Establishment 30
    3.5 Applications for Remanufacturing 31
    3.6 Problems and Prospects 32
    References 34
    Part II Detection of Damage in Ferromagnetic Remanufacturing Cores by the MMM Technique 39
    4 Stress Induces MMM Signals 39
    4.1 Intxoductioii 39
    4.2 Variations in the MMM Signals Induced by Static Stress 40
    4.2.1 Under the Elastic Stage 41
    4.2.2 Under the Plastic Stage 42
    4.2.3 Theoretical Analysis 44
    4.3 Variations in the MMM Signals Induced by Cyclic Stress 45
    4.3.1 Under Different Stress Cycle Numbers 46
    4.3.2 Characterization of Fatigue Crack Propagation 49
    4.4 Conclusions 52
    References 52
    5 Frictional Wear Induces MMM Signals 55
    5.1 Introduction 55
    5.2 Reciprocating Sliding Friction Damage 56
    5.2.1 Variations in the Tribology Parameters During Friction 58
    5.2.2 Variations in the Magnetic Memory Signals Parallel to Sliding 60
    5.2.3 Variations in the Magnetic Memory Signals Normal to Sliding 62
    5.2.4 Relationship Between the Tribology 65
    Characteristics and Magnetic Signals 66
    5.3 Single Disassembly Friction Damage 68
    5.3.1 Surface Damage and Microstructure Analysis 69
    5.3.2 Variations in the MMM Signals 73
    5.3.3 Damage Evaluation of Disassembly 76
    5.3.4 Verification for Feasibility and Repeatability 80
    5.4 Conclusions 81
    References 81
    6 Stress Concentration Impacts on MMM Signals 83
    6.1 Introduction 84
    6.2 Stress Concentration Evaluation Based on the Magnetic Dipole Model 84
    6.2.1 Establishment of the Magnetic Dipole Model 86
    6.2.2 Characterization of the Stress Concentration Degree 86
    6.2.3 Contributions of Stress and Discontinuity to MMM Signals 91
    6.3 Stress Concentration Evaluation Based on the Magnetic Dual-Dipole Model 95
    6.3.1 Magnetic Scalar Potential 95
    6.3.2 Magnetic Dipole and Its Scalar Potential 97
    6.3.3 Measurement Process and Results 100
    6.3.4 Analysis of the Magnetic Scalar Potential 103
    6.4 Stress Concentration Inversion Method 110
    6.4.1 Inversion Model of the Stress Concentration Based on the Magnetic Source Distribution 110
    6.4.2 Inversion of a One-Dimensional Stress Concentration 112
    6.4.3 Inversion of a Two-Dimensional Stress Concentration 114
    6.5 Conclusions 114
    References 115
    7 Temperature Impacts on MMM Signals 117
    7.1 Introduction 117
    7.2 Modified J-A Model Based on Thermal and Mechanical Effects 117
    7.2.1 Effect of Static Tensile Stress on the Magnetic Field 118
    7.2.2 Effect of Temperature on the Magnetic Field 119
    7.2.3 Variation in the Magnetic Field Intensity 120
    7.3 Measurement of MMM Signals Under Different Temperatures 121
    7.3.1 Material Preparation 122
    7.3.2 Testing Method 122
    7.4 Variations in MMM Signals with Temperature and Stress 123
    7.4.1 Normal Component of the Magnetic Signal 125
    7.4.2 Mean Value of the Normal Component of the Magnetic Signal 128
    7.4.3 Variation Mechanism of the Magnetic Signals Under Different Temperatures 130
    7.4.4 Analysis Based on the Proposed Theoretical Model 131
    7.5 Conclusions 132
    References 132
    8 Applied Magnetic Field Strengthens MMM Signals 133
    8.1 Introduction 133
    8.2 MMM Signal Strengthening Effect Under Fatigue Stress 134
    8.2.1 Variations in the MMM Signals with an Applied Magnetic Field 135
    8.2.2 Theoretical Explanation Based on the Magnetic Dipole Model 137
    8.3 MMM Signal Strengthening Effect Under Static Stress 139
    8.3.1 Magnetic Signals Excited by the Geomagnetic Field 140
    8.3.2 Magnetic Signals Excited by the Applied Magnetic Field 142
    8.4 Conclusions 146
    References 147
    Part III Evaluation of the Repair Quality of Remanufacturmg Samples by the MMM Technique
    9 Characterization of Heat Residual Stress During Repair 151
    9.1 Introduction 151
    9.2 Preparation of Cladding Coating and Measurement of MMM Signals 153
    9.2.1 Specimen Preparation 153
    9.2.2 Measurement Method 153
    9.2.3 Data Preprocessing 155
    9.3 Distribution of MMM Signals near the Heat Affected Zone 156
    9.3.1 Magnetic Signals Parallel to the Cladding Coating 156
    9.3.2 Magnetic Signals Perpendicular to the Cladding Coating 157
    9.3.3 Three-Dimensional Spatial Magnetic Signals 159
    9.3.4 Verification Based on the XRD Method 161
    9.4 Generation Mechanism of MMM Signals in the Heat Affected Zone 164
    9.4.1 Microstructure and Phase Transformation 164
    9.4.2 Microhardness Distribution 165
    9.5 Conclusions 166
    References 167
    10 Detection of Damage in Remanufactured Coating 169
    10.1 Introduction 169
    10.2 Cladding Coating and Its MMM Measurement 170
    10.3 Result and Discussion 172
    10.3.1 Variations in MMM Signals Under the Fatigue Process 172
    10.3.2 Comparison of the Magnetic Properties from Different Material Layers 172
    10.3.3 Microstructure Analysis 174
    10.4 Conclusions 177
    References 178
    11 Detection and Evaluation of Coating Interface Damage 181
    11.1 Introduction 181
    11.2 Theoretical Framework 183
    11.2.1 Fatigue Cohesive Zone Model 183
    11.2.2 Magnetomechanical Model 184
    11.2.3 Numerical Algorithm of the Coupling Model 185
    11.2.4 Calculation of the Magnetic Field Intensity 186
    11.3 Case Analysis for the Theoretical Model 186
    11.3.1 Finite Element Model Setup 186
    11.3.2 Finite Element Simulation Results 188
    11.3.3 Prediction of Interfacial Crack Initiation 190
    11.3.4 Prediction of the Interfacial Crack Propagation Behavior 191
    11.4 Experimental Verification 194
    11.4.1 MMM Measurement Method 194
    11.4.2 MMM Signal Analysis 196
    11.4.3 Interfacial Crack Observation 198
    11.5 Conclusions 200
    References 200
    Part IV Engineering Applications in Remanufacturing
    12 Detection of Damage of the Waste Drive Axle Housing and Hydraulic Cylinder 205
    12.1 Introduction 205
    12.2 Application of MMM in the Evaluation of Fatigue Damage of the Drive Axle Housing 206
    12.2.1 Relation Between MMM Signals and Fatigue Cycles 206
    12.2.2 Relation Between MMM Signals and Deformation Degree 209
    12.3 Application of MMM in the Evaluation of Fatigue Damage of Retired Hydraulic Cylinders 210
    12.3.1 Threshold Determination Method for Remanufacturability Evaluation 210
    12.3.2 Experimental Verification 212
    12.4 Conclusions 215
    References 216
    13 Evaluation of the Repair Quality of Remanufactured Crankshafts 217
    13.1 Introduction 217
    13.2 Repair Process in Remanufacturing 218
    13.3 Evaluation of the Repair Quality of the Remanufactured Coating 219
    13.3.1 Optimization of the Processing Parameters 219
    13.3.2 Effect of the Processing Parameters on the Microstructure 221
    13.3.3 Effect of the Processing Parameters on the Microhardness 223
    13.3.4 Effect of the Processing Parameters on the Wear Resistance 223
    13.4 Repair Quality Evaluation Based on MMM Measurement 223
    13.5 Conclusions 226
    References 227
    14 Development of a High-Precision 3D MMM Signal Testing Instrument 229
    14.1 Introduction 229
    14.2 Framework of the Detection System 230
    14.3 Detailed Processes of Instrument Development 231
    14.3.1 Hardware Design 231
    14.3.2 Software Design 232
    14.4 Calibration of Self-developed Instrument 234
    14.4.1 Static Performance of the Instrument 234
    14.4.2 Ability to React to the Geomagnetic Field 235
    14.5 Testing of the Self-developed Instrument 237
    14.5.1 Testing Method and Process 237
    14.5.2 Display and Analysis of MMM Signals 238
    14.6 Comparison of the MMM Testing Instruments 238
    14.7 Conclusions 240
    References 240
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证