0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 力学 > 工程力学 > 计算颗粒力学及工程应用(英文版)

相同作者的商品

相同语种的商品

浏览历史

计算颗粒力学及工程应用(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
计算颗粒力学及工程应用(英文版)
  • 书号:9787030645500
    作者:季顺迎,刘璐
  • 外文书名:
  • 装帧:圆脊精装
    开本:特16
  • 页数:387
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥298.00元
    售价: ¥235.42元
  • 图书介质:
    纸质书

  • 购买数量: 件  商品库存: 1
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

This book systematically introduces readers to computational granular mechanics and its relative engineering applications. Part I describes the fundamentals, such as the generation of irregular particle shapes, contact models, macro micro theory, DEM-FEM coupling. and solid-fluid coupling of granular materials. It also discusses the theory behind various numerical methods developed in recent years. Further, it provides the GPU-based parallel algorithm to guide the programming of DEM and examines commercial and open-source codes and software for the analysis of granular materials. Part II focuses on engineering applications, including the latest advances in sea-ice engineering. railway ballast dynamics, and lunar landers. It also presents a rational method of parameter calibration and thorough analyses of DEM simulations, which illustrate the capabilities of DEM. The computational mechanics method for granular materials can be applied widely in various engineering fields. such as rock and. soil mechanics, ocean engineering and chemical process engineering.

本书将围绕计算颗粒材料的基本理论和在不同领域中的工程应用展开,主要包括作者课题组的近几年的研究成果,并参考当前国内外的研究现状,重点对颗粒细观力学、宏细观分析、非规则颗粒形态和大规模计算等基础问题,以及在海冰动力学、有碴铁路道床、工程地质灾害和颗粒阻尼技术等方面的工程应用进行阐述。本书将理论研究与工程实践密切结合,为不同研究领域的颗粒问题研究提供有益的帮助,也为解决工程颗粒问题提供一定的思路。

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction 1
    1.1 Engineering Demands of Granular Mechanics 2
    1.2 Basic Physical and Mechanical Properties of Granular Materials 8
    1.2.1 Friction Law 8
    1.2.2 Grain Silo Effect 9
    1.2.3 Extrusion and Shear Expansion of Granular Materials 10
    1.2.4 The Flow State of Granular Materials 12
    1.3 Computational Analysis Softwares for Computational Granular Mechanics 15
    References 17
    Part I Fundamentals of Computational Granular Mechanics
    2 Constructions of Irregular Shaped Particles in the DEM 23
    2.1 Bonding and Clumping Models Based on Spherical Particles 24
    2.1.1 Bonding Models Based on Spheres 24
    2.1.2 Clumping Models Based on Spheres 26
    2.2 Super-Quadric Particles 30
    2.2.1 Super-Quadric Particles 31
    2.2.2 Ellipsoidal Particles Based on Super-Quadric Equation 34
    2.3 Polyhedral and Dilated Polyhedral Particles 36
    2.3.1 Polyhedral Particles 36
    2.3.2 Dilated Polyhedral Particles Based on Minkowski Sum 38
    2.4 Advanced Constructions of Novel Irregular Shaped Particles 40
    2.4.1 Random Star-Shaped Particles 40
    2.4.2 B-Spline Function Models 42
    2.4.3 Combined Geometric Element Method 43
    2.4.4 Potential Particle Model 44
    2.4.5 Poly-superellipsoid Model 46
    2.5 Summary 47
    References 47
    3 Contact Force Models for Granular Materials 51
    3.1 Visco-Elastic Contact Models of Spherical Particles 52
    3.1.1 Linear Contact Model 53
    3.1.2 Nonlinear Contact Model 55
    3.2 Elastic-Plastic Contact Models of Spherical Particles 58
    3.2.1 Normal Elastic-Plastic Contact Model 58
    3.2.2 Tangential Elastic-Plastic Contact Model 60
    3.3 Rolling Friction Models of Spherical Particles 62
    3.3.1 Rolling Friction Law 63
    3.3.2 Rolling Friction Model of Spherical Particles 64
    3.4 Bonding-Breakage Models of Spherical Particles 66
    3.5 Contact Models of Non-spherical Particles 71
    3.5.1 Contact Model Between Super-Quadric Particles 71
    3.5.2 Contact Model of Dilated Polyhedral Particles 73
    3.6 Non-contact Physical Interactions Between Particles 76
    3.6.1 Adhesion Force Between Spherical Particles 77
    3.6.2 Liquid Bridge Force Between Wet Particles 80
    3.6.3 Heat Conduction Between Particles 83
    3.7 Summary 93
    References 94
    4 Macro-Meso Analysis of Stress and Strain Fields of Granular Materials 97
    4.1 Computational Homogenization Method Based on Mean Field Theory 98
    4.1.1 Variational Representation of Frictional Contact Problems 99
    4.1.2 Macro-Meso Two Scale Boundary Value Problems 101
    4.1.3 Macro-Meso Scale Solution Procedures Based on Mean Field Theory 104
    4.2 Meso Analysis of Stress Field of Granular Materials 107
    4.2.1 Average Stress Description of the Micro Topological Structure 108
    4.2.2 Stress Characterization of Particle Aggregates 112
    4.2.3 Description of Macro Stress Based on Virtual Work 114
    4.2.4 The Average Stress of the RVE in a Cosserat Continuum 121
    4.3 Meso Analysis of Strain Field of Granular Materials 123
    4.3.1 Definition of Strain by Bagi 124
    4.3.2 Definition of Strain by Kruyt-Rothenburg 125
    4.3.3 Definition of Strain by Kuhn 127
    4.3.4 Definition of Optimal Fitting Strain by Cundall 128
    4.3.5 Definition of Optimal Fitting Strain by Liao et al 129
    4.3.6 Definition of Optimal Fitting Strain by Cambou et al 130
    4.3.7 Definition of Volumetric Strain by Li et al 131
    4.4 Summary 134
    References 135
    5 Coupled DEM-FEM Analysis of Granular Materials 137
    5.1 Combined DEM-FEM Method for the Transition from Continuum to Granular Materials 138
    5.1.1 Contact Algorithm 139
    5.1.2 Deformation of Element 142
    5.1.3 Failure Model of Materials 144
    5.2 Coupled DEM-FEM Model for the Continua-Discontinua Bridging Domain 150
    5.2.1 Weak Form of Governing Equations for the Bridging Domain 151
    5.2.2 Coupling Interface Force 154
    5.2.3 Coupling Point Search 157
    5.3 Coupled DEM-FEM Method for the Interaction Between Continua and Discontinua 159
    5.3.1 Global Search Detection of Particle-Structure Contacts 159
    5.3.2 Local Search Detection of Particle-Structure Contacts 165
    5.3.3 Transfer of Contact Forces 168
    5.4 Summary 171
    References 172
    6 Fluid-Solid Coupling Analysis of Granular Materials 175
    6.1 DEM-CFD Coupling Method for Granular Materials and Fluid 175
    6.1.1 Basic Governing Equations of Particles 176
    6.1.2 DEM-CFD Coupling Solution Method 176
    6.1.3 Governing Equations of Fluid Domain 177
    6.1.4 Momentum Exchange Between Fluid and Solid Particles 177
    6.1.5 Fluid Volume Fraction 179
    6.1.6 Convection Heat Transfer Term 179
    6.2 DEM-SPH Coupling Method for Granular Materials and Fluid 182
    6.2.1 Integral Representation of Function and Particle Approximation in SPH 183
    6.2.2 SPH Form for Navier-Stokes Equations 184
    6.2.3 The EISPH Method for Incompressible Fluid 188
    6.2.4 DEM-SPH Coupling Model 189
    6.3 DEM-LBM Coupling Method for Granular Materials and Fluid 195
    6.3.1 Lattice Boltzmann Method 196
    6.3.2 DEM-LBM Coupling Immersion Boundary Method 200
    6.3.3 Application of the DEM-LBM Coupling Method 204
    6.4 Summary 205
    References 208
    7 High Performance Algorithm and Computing Analysis Software of DEM Based on GPU Parallel Algorithm 211
    7.1 Developments of Computing and Analysis Software of DEM 211
    7.1.1 GPU Parallel Technology 211
    7.1.2 Development of Discrete Element Computing and Analysis Software 212
    7.2 Numerical Algorithm of DEM Based on CUDA Programming 219
    7.2.1 Hardware and Software Architecture of CUDA 219
    7.2.2 Discrete Element Algorithm in Multi-machine/Multi-GPU Environment 222
    7.3 High Performance Contact Detection Based on GPU 223
    7.3.1 Relationship Between Grid and Particles 224
    7.3.2 Establishment of Neighbor List 227
    7.3.3 Calculation of Contact Force Sequence 228
    7.4 DEM Computing Analysis Software Based on GPU Parallel Algorithm 231
    7.5 Summary 233
    References 233
    Part II Engineering Applications of Computational Granular Mechanics
    8 DEM Analysis of Ice Loads on Offshore Structures and Ship Hull 237
    8.1 DEM for Sea Ice and Determination of Computational Parameters 238
    8.1.1 Discrete Element Construction of Sea Ice 238
    8.1.2 Discrete Element Analysis of Sea Ice Compression and Flexural Strength 243
    8.1.3 Main Computation Parameters in Sea Ice DEM Simulations 248
    8.1.4 Failure Criteria Between Bonded Particles 249
    8.1.5 DEM Simulations of Sea Ice Strength Influenced by Particle Size 251
    8.2 DEM Analysis for the Interaction Between Sea Ice and Fixed Offshore Platform 254
    8.2.1 DEM Analysis of Ice Load on Cylindrical Leg Structure 254
    8.2.2 DEM Analysis of Ice Load on Conical Offshore Platform Structure 256
    8.2.3 Shadowing Effect of Multi-leg Conical Jacket Platform Structure 261
    8.2.4 DEM Analysis of Ice Load on Jack-Up Offshore Platform Structure 267
    8.3 DEM Analysis for the Interaction Between Sea Ice and Floating Platform and Ship Hull 269
    8.3.1 Analysis of Ice Load on Floating Offshore Platforms 269
    8.3.2 DEM Simulation of the Ship Sailing in the Ice Zone 272
    8.4 DEM-FEM Coupling Analysis for Ice-Induced Vibration of Marine Structure 274
    8.4.1 DEM-FEM Coupling Method for Ice-Induced Vibration of Jacket Platform 274
    8.4.2 DEM-FEM Method for Ice-Induced Vibration of Jacket Platform 278
    8.5 Simulation of Ice Load on Marine Structure with Dilated Particles 284
    8.5.1 Interaction Between Broken Ice and Pile Legs, Floating Structures 284
    8.5.2 Interaction Between Level Ice and Ship Hull Structure 288
    8.6 DEM Analysis for Characteristics of Sea Ice Pile-Up on Water Intake of Nuclear Power Plant 290
    8.6.1 Numerical Simulation of Sea Ice Pile-Up at the Water Intake 290
    8.6.2 Analysis of Influencing Factors of Sea Ice Pile-Up Characteristics 293
    8.7 Coarse-Grained DEM Model for Sea Ice Dynamics 295
    8.7.1 The Coarse-Grained DEM of Sea Ice 296
    8.7.2 Numerical Simulation of Sea Ice Dynamic Processes in the Regular Domain 299
    8.7.3 Numerical Simulation of the Dynamic Process of the Bohai Sea Ice 303
    8.8 Summary 308
    References 309
    9 DEM Analysis of Mechanical Behaviors of Railway Ballast 311
    9.1 DEM Analysis of Ballast Particle Breakage 312
    9.1.1 DEM Analysis of Ballast Breakage 312
    9.1.2 The Experimental Verification of Ballast Particle Breakage 315
    9.2 DEM Analysis of Dynamic Response of Railway Ballast 318
    9.2.1 Construction of Irregularly Shaped Ballast 319
    9.2.2 DEM Modelling of Ballast Box Test 319
    9.2.3 Effect of Loading Frequency on Accumulated Settlement of Full-Scale Ballast Bed 323
    9.3 Direct Shear Tests of Fouled Ballast 326
    9.3.1 Direct Shear Tests of Fouled Ballast 326
    9.3.2 Effect of Fine Grains on Shear Strength 329
    9.3.3 Effect of Fine Grains on Dilatancy Behavior of Ballast 331
    9.4 DEM Analysis of Shear Strength of Sand-Fouled Ballast 332
    9.4.1 DEM Simulations of Direct Shear of Sand-Fouled Ballast 332
    9.4.2 Shear Strength and Force Chain Analysis with Different Ballast Contents 336
    9.5 Coupled DEM-FEM Analysis of the Transition Zone Between Ballasted-Ballastless Track 337
    9.5.1 DEM-FEM Algorithm in Railway Ballasted Track 338
    9.5.2 DEM-FEM Model for Ballasted-Ballastless Transition Zone 344
    9.5.3 Settlement Analysis of the Transition Zone 345
    9.5.4 Coupled DEM-FEM Analysis Considering Ballast Embedded in Ballastless Bed 348
    9.6 DEM Simulations of Railway Ballast Bed with Dilated Polyhedral Particles 351
    9.6.1 Ballast Box Test Model with Dilated Polyhedral Particles 351
    9.6.2 Settlement of Ballast Bed Under Various Cyclic Loading Frequencies 354
    9.7 Summary 355
    References 356
    10 DEM Analysis of Vibration Reduction and Buffering Capacity of Granular Materials 359
    10.1 DEM Simulations and Experimental Tests of Vibration Reduction of Granular Materials 359
    10.1.1 Experimental Studies on Particle Damper 360
    10.1.2 Numerical Simulation of Particle Damper 363
    10.2 DEM Analysis of Buffering Capacity of Granular Materials 366
    10.2.1 Experimental Studies on Buffering Capacity of Granular Materials 366
    10.2.2 Numerical Simulations of Buffering Capacity of Granular Materials 370
    10.3 DEM Analysis of Landing Process of Lunar Lander 377
    10.3.1 Discrete Element Model of Landing Buffering System and Lunar Soil 378
    10.3.2 Discrete Element Analysis of Landing Process and Impact Characteristics 380
    10.4 Summary 385
    References 386
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证