0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 力学 > 流体力学 > 计算流体力学原理

浏览历史

计算流体力学原理


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
计算流体力学原理
  • 书号:9787030166777
    作者:(荷)韦斯林(Wesseling P.)
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:646
    字数:789000
    语种:en
  • 出版社:科学出版社
    出版时间:2006-01-01
  • 所属分类:
  • 定价: ¥198.00元
    售价: ¥158.40元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Table of Contents
    Preface iii
    1.The basic equations of fiuid dynamics 1
    1.1 Introduction 1
    1.2 Vector analysis 5
    1.3 The total derivative and the transport theorem 9
    1.4 Conservation of mass 12
    1.5 Conservation of momentum 13
    1.6 Conservation of energy 19
    1.7 Thermodynamic aspects 22
    1.8 Bernoulli's theorem 26
    1.9 Kelvin's circulation theorem and potential flow 28
    1.10 The Euler equations 32
    1.11 The convection-diffusion equation 33
    1.12 Conditions for incompressible flow 34
    1.13 Turbulence 37
    1.14 Stratified flow and free convection 43
    1.15 Moving frame of reference 47
    1.16 The shallow-water equations 48
    2.Partial differential equations: analytic aspects 53
    2.1 Introduction 53
    2.2 Classification of partial differential equations 54
    2.3 Boundary conditions 61
    2.4 Maximum principles 66
    2.5 Boundary layer theory 70
    3.Finite volume and fìnite difference discretization on
    nonuniform grids 81
    3.1 Introduction 81
    3.2 An elliptic equation 82
    3.3 A one-dimensional example 84
    3.4 Vertex-centered discretization 88
    3.5 Cell-centered discretization , 94
    3.6 Upwind discretization 96
    3.7 Nonuniform grids in one dimension 99
    4.The stationary convection-diffusion equation 111
    4.1 Introduction 111
    4.2 Finite volume discretization of the stationary convectiondiffusion equation in one dimension 113
    4.3 Numerical experiments on locally refined one-dimensional grid 120
    4.4 Schemes of positive type 122
    4.5 Upwind discretization 126
    4.6 Defect correction 129
    4.7 Péclet-independent accuracy in two dimensions 133
    4.8 More accurate discretization of the convection term 148
    5.The nonstationary convection-diffusion equation 163
    5.1 Introduction 163
    5.2 Example of instability 164
    5.3 Stability definitions 166
    5 4 The discrete maximum principle 170
    5.5 Fourier stability analysis 171
    5.6 Principles of von Neumann stability analysis 174
    5.7 Useful properties of the symbol 178
    5.8 Derivation of von Neumann stability conditions 184
    5.9 Numerical experiments 208
    5.10 Strong stability 217
    6.The incompressible Navier-Stokes equations 227
    6.1 Introduction 227
    6.2 Equations of motion and boundary conditions 227
    6.3 Spatial discretization on colocated grid 232
    6.4 Spatial discretization on staggered grid 240
    6.5 On the choice of boundary conditions 244
    6.6 Temporal discretization on staggered grid 249
    6.7 Temporal discretization on colocated grid 261
    7.Iterative methods 263
    7.1 Introduction 263
    7.2 Stationary iterative methods 264
    7.3 Krylov subspace methods 270
    7.4 Multigrid methods 285
    7.5 Fast Poisson solvers 292
    7.6 Iterative methods for the incompressible Navier-Stokes equations 293
    8.The shallow-water equations 305
    8.1 Introduction 305
    8.2 The one-dimensional case 305
    8.3 The two-dimensional case 323
    9.Scalar conservation laws 339
    9.1 Introduction 339
    9.2 Godunov's order barrier theorem 339
    9.3 Linear schemes 346
    9.4 Scalar conservation laws 361
    10.The Euler equations in one space dimension 397
    10.1 Introduction 397
    10.2 Analytic aspects 397
    10.3 The approximate Riemann solver of Roe 414
    10.4 The Osher scheme 425
    10.5 Flux splitting schemes 436
    10.6 Numerical stability 442
    10.7 The Jameson-Schmidt-Turkel scheme 447
    10.8 Higher order schemes 456
    11.Discretization in general domains 467
    11.1 Introduction 467
    11.2 Three types of grid 467
    11.3 Boundary-fitted grids 470
    11.4 Basic geometric properties of grid cells 474
    11.5 Introduction to tensor analysis 484
    11.5.1 Invariance 485
    11.5.2 The geometric quantities 490
    11.5.3 Tensor calculus 498
    11.5.4 The equations of motion in general coordinates 501
    12.Numerical solution of the Euler equations in general domains 503
    12.1 Introduction 503
    12.2 Analytic aspects 503
    12.3 Cell-centered finite volume discretization on boundary-fitted grids 511
    12.4 Numerical boundary conditions 518
    12.5 Temporal discretization 525
    13.Numerical solution of the Navier-Stokes equations in general domains 531
    13.1 Introduction 531
    13.2 Analytic aspects 531
    13.3 Colocated scheme for the compressible Navier-Stokes equations 533
    13.4 Colocated scheme for the incompressible Navier-Stokes equations 535
    13.5 Staggered scheme for the incompressible Navier-Stokes equations 538
    13.6 An application 557
    13.7 Verification and validation 559
    14.Unified methods for computing incompressible and compressible fiow 567
    14.1 The need for unified methods 567
    14.2 Difficulties with the zero Mach number limit 568
    14.3 Preconditioning 571
    14.4 Mach-uniform dimensionless Euler equations 578
    14.5 A staggered scheme for fully compressible flow 583
    14.6 Unified schemes for incompressible and compressible flow 589
    References 603
    Index 633
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证