0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 理学 > 0701 数学 > 实变函数与泛函分析

相同作者的商品

相同语种的商品

浏览历史

实变函数与泛函分析


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
实变函数与泛函分析
  • 书号:9787030538673
    作者:曹怀信等
  • 外文书名:
  • 丛书名:普通高等教育“十三五”规划教材
  • 装帧:平装
    开本:B5
  • 页数:360
    字数:454000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2017-08-01
  • 所属分类:
  • 定价: ¥49.00元
    售价: ¥49.00元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书包括集合论基础、Rn 中的点集理论、测度理论、可测函数、勒贝格积分论、空间理论、巴拿赫空间上的有界线性算子理论、非线性算子等内容.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    前言
    第1章 集合论基础 1
    1.1 集合及其运算 1
    1.1.1 集合的概念 1
    1.1.2 集合的表示 2
    1.1.3 集合的运算 3
    习题 1.1 10
    1.2 集合的基数 11
    1.2.1 对等性 12
    1.2.2 基数的概念 13
    1.2.3 基数的比较 13
    习题 1.2 15
    1.3 可数集合 16
    习题 1.3 20
    1.4 基数为 c 的集合 20
    习题 1.4 25
    总练习题 1 26
    第2章 Rn中的点集理论 27
    2.1 基本概念 27
    2.1.1 n维欧氏空间 Rn 27
    2.1.2 点列的收敛性 28
    2.1.3 点集的几种特殊点 29
    2.1.4 基本结论 30
    习题 2.1 31
    2.2 开集、闭集与完备集 32
    2.2.1 开集与闭集 32
    2.2.2 Gδ型集、Fδ型集与博雷尔集 34
    2.2.3 自密集与完备集 35
    习题 2.2 37
    2.3 闭集套原理与覆盖定理 38
    习题 2.3 40
    2.4 开集的构造 40
    习题 2.4 42
    2.5 点集上的连续函数 42
    习题 2.5 46
    2.6 点集间的距离 46
    习题 2.6 48
    总练习题 2 49
    第3章 测度理论 50
    3.1 外测度的定义与性质 50
    3.1.1 外测度的定义 50
    3.1.2 外测度的性质 53
    习题 3.1 56
    3.2 可测集的定义及性质 56
    3.2.1 可测集的定义 56
    3.2.2 可测集的运算性质 57
    习题 3.2 62
    3.3 可测集类 63
    习题 3.3 67
    3.4 可测集的构造 67
    习题 3.4 73
    总练习题 3 74
    第4章 可测函数 76
    4.1 可测函数的概念与运算 76
    4.1.1 简单函数 76
    4.1.2 可测函数的概念与运算性质 78
    习题 4.1 79
    4.2 可测函数的刻画与性质 80
    4.2.1 预备定理 80
    4.2.2 非负可测函数的刻画 80
    4.2.3 一般可测函数的刻画 83
    4.2.4 可测函数的性质 85
    习题 4.2 87
    4.3 叶果洛夫定理 88
    4.3.1 几乎处处的概念 88
    4.3.2 叶果洛夫定理 89
    习题 4.3 93
    4.4 依测度收敛性 93
    习题 4.4 98
    4.5 鲁金定理 99
    习题 4.5 104
    总练习题 4 105
    第5章 勒贝格积分 106
    5.1 非负可测函数的积分 106
    5.1.1 定义与例子 106
    5.1.2 基本性质 109
    习题 5.1 116
    5.2 一般可测函数的积分 116
    习题 5.2 122
    5.3 例子 123
    习题 5.3 129
    5.4 勒贝格控制收敛定理 130
    习题 5.4 136
    5.5 R-积分与L-积分的关系 137
    习题 5.5 146
    5.6 富比尼定理 147
    习题 5.6 150
    5.7 有界变差函数 151
    习题 5.7 156
    5.8 绝对连续函数 157
    习题 5.8 163
    总练习题5 164
    第6章 空间理论 166
    6.1 距离空间 166
    6.1.1 定义与例子 166
    6.1.2 完备距离空间 168
    6.1.3 开集与闭集 171
    6.1.4 可分距离空间 173
    6.1.5 连续映射 173
    6.1.6 列紧空间 176
    6.1.7 压缩映射原理 179
    习题 6.1 183
    6.2 赋范线性空间 185
    6.2.1 定义与例子 185
    6.2.2 有限维赋范线性空间 190
    习题 6.2 193
    6.3 内积空间 196
    6.3.1 内积空间的概念与基本性质 196
    6.3.2 正交分解 200
    6.3.3 正规正交系 202
    习题 6.3 208
    6.4 拓扑空间简介 209
    6.4.1 拓扑空间 209
    6.4.2 连续映射与同胚 212
    习题 6.4 212
    总练习题 6 213
    第7章 巴拿赫空间上的有界线性算子理论 216
    7.1 有界线性算子 217
    7.1.1 定义、例子与基本性质 217
    7.1.2 有界线性算子的范数 221
    7.1.3 算子空间与巴拿赫代数 225
    习题 7.1 228
    7.2 哈恩-巴拿赫延拓定理 230
    7.2.1 线性泛函的延拓 230
    7.2.2 有界线性泛函的存在性 235
    习题 7.2 236
    7.3 有界线性泛函的表示 237
    7.3.1 n维空间 Kn上的有界线性泛函 237
    7.3.2 lp(K)上的有界线性泛函 (1 < p < ) 238
    7.3.3 Lp[a,b]上的有界线性泛函 (1 < p < 1) 240
    7.3.4 C[a,b]上的有界线性泛函 244
    7.3.5 希尔伯特空间上有界线性泛函的表示 244
    习题 7.3 245
    7.4 共轭空间与共轭算子 246
    7.4.1 共轭空间 246
    7.4.2 共轭算子 250
    习题 7.4 253
    7.5 逆算子定理与开映射定理 255
    7.5.1 逆算子的概念与基本性质 255
    7.5.2 逆算子的有界性 256
    习题 7.5 261
    7.6 闭图像定理与一致有界原理 262
    7.6.1 闭算子与闭图像定理 262
    7.6.2 一致有界原理及其应用 264
    习题 7.6 266
    7.7 强弱收敛与弱*收敛 267
    7.7.1 点列的弱收敛 267
    7.7.2 算子列的强、弱收敛 269
    7.7.3 泛函列的强、弱收敛与弱*收敛 272
    习题 7.7 272
    7.8 紧算子 273
    7.8.1 定义与例子 273
    7.8.2 紧算子的性质 275
    习题 7.8 277
    总练习题 7 279
    第8章 非线性算子 281
    8.1 连续性与有界性 281
    8.1.1 定义与例子 281
    8.1.2 连续算子的性质 282
    8.1.3 一类复合算子的连续性与有界性 283
    习题 8.1 286
    8.2 紧性与全连续性 287
    8.2.1 定义与基本性质 287
    8.2.2 完全连续算子的结构 289
    习题 8.2 292
    8.3 抽象函数的导数 293
    8.3.1 实变抽象函数的导数 293
    8.3.2 复变抽象函数的导数 296
    习题 8.3 298
    8.4 抽象函数的积分 299
    8.4.1 定义与例子 299
    8.4.2 可积条件 300
    8.4.3 运算性质 303
    习题 8.4 305
    8.5 费雷歇导算子 305
    8.5.1 定义与性质 305
    8.5.2 中值定理与导算子的完全连续性 313
    8.5.3 高阶导算子与泰勒公式 315
    习题 8.5 318
    8.6 加特导算子 320
    8.6.1 定义与性质 320
    8.6.2 两种微分之间的关系 321
    习题 8.6 326
    8.7 偏导算子与隐算子定理 326
    8.7.1 偏导算子 327
    8.7.2 隐算子存在定理 329
    8.7.3 反算子存在定理 334
    习题 8.7 335
    总练习题 8 336
    参考文献 338
    附录 339
    1. 偏序集与佐恩引理 339
    2. 泛函延拓定理的证明 342
    3. 算子谱论简介 343
    4. 希尔伯特空间上的有界线性算子简介 346
    5. 中外文人名对照表 348
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证