0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 工学 > 0803 光学工程 > Spectroscopy and Spectral Technique(光谱学与光谱技术)

销售排行榜

浏览历史

Spectroscopy and Spectral Technique(光谱学与光谱技术)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Spectroscopy and Spectral Technique(光谱学与光谱技术)
  • 书号:9787030784650
    作者:刘玉柱,布玛丽亚·阿布力米提
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:364
    字数:474000
    语种:en
  • 出版社:科学出版社
    出版时间:2024-08-01
  • 所属分类:0803 光学工程
  • 定价: ¥139.00元
    售价: ¥109.81元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书首先系统介绍了光谱学的基础概念,包括其起源与发展、原子和分子光谱。接着,详细探讨了11种典型的光谱技术,如激光诱导击穿光谱、拉曼光谱、红外光谱等,包括其原理、实验系统及前沿应用。随后,阐述了如何在材料、环境和工业生产等领域中结合应用多种光谱技术,以及其与单一技术相比的优势。本书还独特地介绍了基于机器学习的人工智能与光谱技术的结合应用。作为一大特色,结合最新科研成果,本书系统设计了多项光谱仿真实验项目。最后,本书展望了光谱学与光谱技术未来的发展趋势。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Chapter 1 Overview of Spectral Techniques 1
    1.1 The Origin of Spectral Techniques 1
    1.1.1 Spectrum and Spectroscopy 1
    1.1.2 The History of Spectral Techniques 1
    1.2 The Development of Spectroscopy Instruments 3
    1.2.1 The Development of Spectroscopic Theory 3
    1.2.2 The Advent of the Laser 4
    1.2.3 Development of Spectrometers 5
    1.3 Atomic Energy Levels and Atomic Spectrum 5
    1.3.1 Atomic Energy Level 5
    1.3.2 Atomic Emission Spectroscopy 6
    1.3.3 Atomic Absorption Spectrum 8
    1.4 Molecular Spectrum 9
    1.4.1 Molecular Vibrational Energy Levels and Corresponding Spectral Techniques 10
    1.4.2 Molecular Electrons Moving Energy Levels and Corresponding Spectral Techniques 11
    References 12
    Chapter 2 Laser-induced Breakdown Spectroscopy 15
    2.1 Birth and Development of LIBS 15
    2.2 Fundamentals of LIBS 17
    2.2.1 Laser-induced Plasma 17
    2.2.2 Local Thermodynamic Equilibrium 18
    2.2.3 Plasma Temperature and Electron Number Density 19
    2.2.4 Qualitative and Quantitative Analysis 20
    2.3 Instrumentation for LIBS 21
    2.3.1 LIBS Experimental Setup 21
    2.3.2 Online/In Situ LIBS Instruments 22
    2.3.3 Signal Enhancement for LIBS 23
    2.4 LIBS Applications 25
    2.4.1 Environmental Monitoring 25
    2.4.2 Coal Analysis 27
    2.4.3 Biomedicine 29
    2.4.4 Agriculture and Food Safety 31
    2.4.5 Space Exploration 32
    2.4.6 Ocean Exploration 34
    References 35
    Chapter 3 Raman Spectroscopy Technology 41
    3.1 Birth and Development of Raman Spectroscopy 41
    3.1.1 The Great Founder 41
    3.1.2 The Birth of Raman Spectroscopy Technology 41
    3.1.3 The Development of Raman Spectroscopy Technology 42
    3.2 Principle of Inelastic Scattering 42
    3.2.1 Nonconservation of the Kinetic Energy of Particles 42
    3.2.2 Elastic and Inelastic Scattering 43
    3.2.3 Raman Scattering and Rayleigh Scattering 43
    3.2.4 Stokes and Anti-Stokes Lines 46
    3.3 Experimental Systems for Raman Spectroscopy 50
    3.3.1 The Source and Splitting of the Light 50
    3.3.2 Collection and Monitoring 53
    3.4 Surface-Enhanced Raman Spectroscopy 54
    3.4.1 Defects of Ordinary Raman Spectroscopy 54
    3.4.2 Principles of Surface-Enhanced Raman Spectroscopy 55
    3.5 Important Applications of Raman Spectroscopy 56
    3.5.1 Spectral Fingerprint 56
    3.5.2 Real-time Detection of Liquid Phase Raman Spectroscopy Experiment 59
    3.5.3 Configuration Analysis of Raman 62
    References 64
    Chapter 4 Differential Optical Absorption Spectroscopy 68
    4.1 Development of DOAS 68
    4.1.1 Development of DO AS Abroad 68
    4.1.2 Domestic DOAS Development 69
    4.1.3 Opportunities and Challenges 70
    4.2 Principle of DOAS 71
    4.2.1 Lambert-Beer,s Law 71
    4.2.2 Advantages of DOAS 72
    4.3 Experimental System of DOAS 73
    4.3.1 Active DOAS System 73
    4.3.2 Passive DOAS System (MAX-DOAS) 74
    4.4 DOAS for Multi-platform 75
    4.4.1 D OAS for the Ground Platform 75
    4.4.2 DOAS for Mobile Platforms 76
    4.4.3 Multi-platform Joint Application 77
    4.5 Important Applications of DOAS 77
    4.5.1 The Global Ozone Monitoring Experiment (GOME) 77
    4.5.2 Gaofen-5 Satellite and Atmospheric Pollution Component Inversion Method 78
    4.5.3 Determination of Plume from the Pollution Source 78
    4.5.4 Planar Array Measurements of Volcanic Plumes 79
    4.5.5 Comprehensive Stereoscopic Observation Network 80
    References 81
    Chapter 5 Infrared Spectroscopy 86
    5.1 Background Introduction of Infrared Spectroscopy 86
    5.1.1 Infrared Radiation 86
    5.1.2 IR Region 87
    5.1.3 Development of IR Spectroscopy 87
    5.2 Principle of IR Spectroscopy 87
    5.2.1 Principle and Characteristics of IR Spectroscopy 87
    5.2.2 Infrared Spectrometer 88
    5.3 Fourier Transform Infrared Spectroscopy 89
    5.3.1 Introduction to FTIR 89
    5.3.2 Principle of FTIR Spectroscopy 89
    5.4 Application of IR Spectroscopy 90
    5.4.1 IR Spectroscopy and Environmental Monitoring 90
    5.4.2 IR Spectroscopy and Food Detection 93
    5.4.3 IR Spectroscopy and Microbiological Analyses 95
    5.4.4 IR Spectroscopy and Agriculture 97
    5.4.5 IR Spectroscopy and Forensic Analysis 100
    References 104
    Chapter 6 Laser-induced Fluorescence Spectroscopy 107
    6.1 Introduction to Fluorescence Spectroscopy 107
    6.1.1 The History of Fluorescence Spectroscopy 107
    6.1.2 Characteristics of Fluorescence Spectroscopy 108
    6.1.3 Traditional Fluorescence Spectroscopy and Laser-induced Fluorescence Spectroscopy 110
    6.2 The Technical Basis of Laser-induced Fluorescence 111
    6.2.1 The Principle of Laser-induced Fluorescence 111
    6.2.2 Affected Factors of Fluorescence 113
    6.2.3 The Development of LIF Technology 114
    6.3 Experimental System of LIF Spectroscopy 115
    6.3.1 Excitation Light Sources 115
    6.3.2 Detector 116
    6.4 Important Applications of LIF 117
    6.4.1 On-line Detection of Carbon Isotopes Based on LIF Spectroscopy of CN Radicals 117
    6.4.2 Applications of LIF in Soils and Sediments 122
    References 122
    Chapter 7 Ultraviolet-visible Absorption Spectroscopy 128
    7.1 Introduction of UV-Vis Absorption Spectroscopy 128
    7.2 Principles of UV-Vis Absorption Spectroscopy 128
    7.2.1 Formation and Characteristics of UV-Vis Absorption Spectrum 128
    7.2.2 Main Types of Electronic Transitions 130
    7.2.3 Absorption Band 131
    7.2.4 Lambert-Beer,s Law and Spectrophotometric Analysis 132
    7.3 Experimental System for UV-Vis Absorption Spectroscopy 133
    7.3.1 Common Laboratory UV-Vis Absorption Spectroscopy Experimental Systems 133
    7.3.2 Common Portable UV-Vis Absorption Spectroscopy Instruments 135
    7.4 Important Applications of UV-Vis Absorption Spectroscopy 136
    7.4.1 Quantitative Analysis by UV-Vis Absorption Spectroscopy 136
    7.4.2 Qualitative Analysis by UV-Vis Absorption Spectroscopy 137
    7.4.3 The Applications of UV-Vis Absorption Spectroscopy in Some Fields 139
    References 140
    Chapter 8 Tunable Diode Laser Absorption Spectroscopy 142
    8.1 Introduction of TDLAS 142
    8.1.1 The Origin and Development of TDLAS 142
    8.1.2 Fundamental Principle of TDLAS 143
    8.2 Gas Detection Method and System 146
    8.2.1 Direct Absorption Spectroscopy 146
    8.2.2 Wavelength Modulation Spectroscopy 147
    8.2.3 Frequency Modulated Spectroscopy 149
    8.2.4 Trace Gas Telemetry System 149
    8.3 Important Applications of TDLAS 151
    8.3.1 Atmospheric Environment Monitoring 151
    8.3.2 Combustion Flow Field Diagnosis 151
    8.3.3 Breath Detection in Medicine 152
    8.3.4 Application in an Industrial Process 154
    References 154
    Chapter 9 Photoacoustic Spectroscopy 161
    9.1 Introduction to Photoacoustic Spectroscopy 161
    9.1.1 History of Photo acoustic Spectroscopy 161
    9.1.2 Current Status of Research on Photoacoustic Spectroscopy 161
    9.2 Principles of Photoacoustic Spectroscopy and Experimental Systems 162
    9.2.1 The Photo acoustic Effect 162
    9.2.2 Photoacoustic Signal and Minimum Detectable Concentration 163
    9.2.3 Experimental Systems 165
    9.3 Applications of PAS 168
    9.3.1 Photoacoustic Spectroscopy for Aerosol Characterization 168
    9.3.2 Breath Ammonia Levels in a Normal Human Population Study as Determined by Photoacoustic Laser Spectroscopy 171
    9.3.3 Non-Invasive Monitoring of Blood Glucose by Photoacoustic Spectroscopy 173
    References 175
    Chapter 10 Cavity Ring-Down Spectroscopy 178
    10.1 The Development of Cavity Ring-Down Spectroscopy 178
    10.1.1 Pulsed Cavity Ring-Down Spectroscopy and Its Development 180
    10.1.2 Continuous Wave Cavity Ring-Down Spectroscopy and Its Development 181
    10.1.3 Optical Fiber Cavity Ring-Down Spectroscopy and Its Development 183
    10.2 The Principle and Experimental System of CRDS 184
    10.2.1 The Principles of CRDS 184
    10.2.2 CRDS Experimental System 187
    10.3 Advanced Technology Based on CRDS 188
    10.3.1 Optical Cavity-Based Advanced Techniques 188
    vi | Spectroscopy and Spectral Technique
    10.3.2 Optical Cavity-Based Hybrid Techniques 192
    10.4 Important Applications of CRDS 198
    10.4.1 Environmental Trace Analysis 198
    10.4.2 Biomedical Applications 201
    10.4.3 Combustion and Plasma Diagnostics 202
    References 204
    Chapter 11 X-ray Fluorescence Spectrometry 212
    11.1 Introduction of X-ray 212
    11.1.1 Discovery of X-ray 212
    11.1.2 Generation Principle of X-ray 213
    11.1.3 Interaction Effects Between X-ray and Matter 214
    11.1.4 Representative Detecting Methods Based on X-ray 215
    11.2 Principle of XRF and Experimental Setup 216
    11.2.1 Characteristics and Advantages of XRF 216
    11.2.2 WDXRF and EDXRF 217
    11.2.3 Micro X-ray Fluorescence 218
    11.2.4 Total Reflection X-ray Fluorescence 219
    11.2.5 Qualitative and Quantitative X-ray Fluorescence Analysis 221
    11.3 Significant Applications of XRF 222
    11.3.1 XRF Applied in Environmental Detection 222
    11.3.2 Classification of Species of Plants by XRF 224
    11.3.3 Determining the Depth Distribution of Elements Using XRF 225
    11.3.4 XRF Applied in Bio-medicine 227
    References 229
    Chapter 12 Hyperspectral Technology 231
    12.1 Introduction to Hyperspectral Technology 231
    12.1.1 The Birth of Hyperspectral Technology 231
    12.1.2 Present Situation of Hyperspectral Technology 233
    12.1.3 Development Prospect of Hyperspectral Technology 235
    12.2 Principle and Experimental System of Hyperspectral Technology 236
    12.2.1 Experimental Principle of Hyperspectral Technology .236
    12.2.2 Introduction to the Experimental System of Hyperspectral Technology 238
    12.2.3 Features and Advantages of Hyperspectral Technology 239
    12.3 Application of Hyperspectral Technology 240
    12.3.1 Application of Hyperspectral Technology in Agricultural Science 240
    12.3.2 Application of Hyperspectral Technology in Food Safety 243
    12.3.3 Application of Hyperspectral Technology in Biomedicine 246
    12.3.4 Application of Hyperspectral Technology in the Military Field 248
    References 248
    Chapter 13 Spectral Fusion Technology and Application 252
    13.1 LIBS and Raman Technologies 252
    13.1.1 The Role of LIBS Technology and Raman Technology in the Application 252
    13.1.2 Important Application Based on LIBS-Raman Technology 254
    13.2 LIBS and LIF Technologies 261
    13.2.1 The Role of LIBS Technology and LIF Technology in Application 261
    13.2.2 Important Application Based on LIBS-LIF Technology 262
    13.3 LIBS, Raman and IR Technologies 263
    13.3.1 Advantages of Adding IR Technology to LIBS Raman Technology 263
    13.3.2 Important Applications Based on LIBS, IR and Raman Technology 264
    References 267
    Chapter 14 Intelligent Spectrum Based on Machine Learning 270
    14.1 Introduction of Machine Learning and Intelligent Spectrum 270
    14.1.1 The Origin and Development of Machine Learning 270
    14.1.2 Introduction of Machine Learning Algorithms Commonly Used 270
    14.2 Laser-Induced Breakdown Spectroscopy (LIBS) and Machine
    Learning 271
    14.2.1 The Advantages of LIBS Combined with Machine Learning 271
    14.2.2 Application of Machine Learning in LIBS 272
    14.3 Infrared Spectroscopy (IR) and Machine Learning 279
    14.3.1 The Advantages of IR Combined with Machine Learning 279
    14.3.2 Application of Machine Learning in IR 280
    14.4 Raman Spectroscopy and Machine Learning 285
    14.4.1 The Advantages of Raman Spectroscopy Combined with Machine Learning 285
    14.4.2 Application of Machine Learning in Raman Spectroscopy 286
    14.5 Schematic of Hyperspectral Imaging (HSI) and Machine Learning 295
    14.5.1 The Advantages of HSI Combined with Machine Learning 295
    14.5.2 Application of Machine Learning in HSI 295
    References 310
    Chapter 15 Simulation Spectrum Teaching Experiments 312
    15.1 Spectral Simulation Software (GaussView & Gaussian) 312
    viii | Spectroscopy and Spectral Technique
    15.1.1 Introduction of GaussView & Gaussian 312
    15.1.2 Molecular Structure Modeling by GaussView 314
    15.1.3 Molecular Structure Parameter Adjustment 320
    15.1.4 Calculation Settings of Gaussian 324
    15.2 IR Spectrum Simulation Experiment .330
    15.2.1 Introduction to Infrared Spectroscopy (IR Spectrum) 330
    15.2.2 The Establishment of Water and Ethanol Molecular Structure 330
    15.2.3 Calculation Parameters Setup for IR Spectrum 334
    15.2.4 IR Spectral Analysis Simulation 335
    15.3 Raman Spectrum Simulation Experiment 338
    15.3.1 Introduction to Raman Spectrum 338
    15.3.2 The Establishment of Oxygen and Ozone Molecular Structure 339
    15.3.3 Calculation Parameters Setup for Raman Spectrum 342
    15.3.4 Raman Spectral Analysis Simulation 343
    15.4 UV-Vis Spectrum Simulation Experiment 345
    15.4.1 Introduction to UV-Vis Spectrum 345
    15.4.2 The Establishment of Benzene and Ethylbenzene Molecular Structure 346
    15.4.3 Calculation Parameters Setup for UV-Vis Spectrum 347
    15.4.4 UV-Vis Spectral Analysis Simulation 348
    15.5 Simulation of the External Electric Field of Ethylbenzene 350
    15.5.1 Research Significance and Background 351
    15.5.2 Theory and Computational Method 351
    15.5.3 Method and Basis Set Selection of EB 352
    15.5.4 Effect of Electric Field on Bond Length and Energy of the Molecule 353
    15.5.5 Effect of Electric Field on Distribution of Molecular Orbital Energy Levels 354
    15.5.6 Effect of Electric Field on Infrared Absorption Intensity 356
    15.5.7 Extension of Related Research (1) Tunneling Ionization 357
    15.5.8 Extension of Related Research (2) Potential Energy Surface Scanning 358
    15.5.9 Research Conclusions 360
    References 360
    Postscript 363
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证