0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 交通/船舶/运输 > Permanent Magnetic Suspension System: Principle, Model, Simulation and Experiment

相同语种的商品

浏览历史

Permanent Magnetic Suspension System: Principle, Model, Simulation and Experiment


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Permanent Magnetic Suspension System: Principle, Model, Simulation and Experiment
  • 书号:9787030575456
    作者:孙凤等
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:212
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥98.00元
    售价: ¥77.42元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Chapter 1 Introduction 1
    1.1 Background of non-contact suspension systems 1
    1.2 Classification of magnetic suspension systems 5
    1.2.1 Classification by magnetic force 5
    1.2.2 Classification of Lorentz force in magnetic suspension systems 6
    1.2.3 Classification of reluctance force in magnetic suspension systems 7
    1.3 Application of magnetic suspension systems 14
    1.4 MATLAB 17
    1.4.1 Systematic environment 19
    1.4.2 MATLAB system constitution 20
    1.4.3 Control System Toolbox 21
    1.4.4 Simulink Control Design 22
    1.4.5 ADC and DAC 22
    1.5 dSPACE platform 25
    1.5.1 Introduction to the dSPACE 1103 26
    1.5.2 Introduction to the dSPACE 1104 28
    1.5.3 Introduction to ControlDesk 28
    1.5.4 Integrated development environment of dSPACE 28
    Chapter 2 Hanging type of permanent magnetic suspension system 31
    2.1 Introduction 31
    2.2 Suspension principle 33
    2.3 Experimental prototype 34
    2.3.1 Experimental prototype setup 34
    2.3.2 Examination of attractive force 35
    2.4 Mathematical model and analysis of suspension feasibility 36
    2.4.1 Mathematical model 36
    2.4.2 Analysis of suspension feasibility 37
    2.5 Realization of zero-power control 39
    2.5.1 Realization in device 39
    2.5.2 Realization in mathematical model 40
    2.5.3 Realization in control system 40
    2.6 Numerical simulation 42
    2.6.1 Calculation of feedback gains 42
    2.6.2 Numerical simulation analysis 43
    2.7 Experimental results 48
    Chapter 3 Non-contact suspension system with permanent magnet motion feedback 53
    3.1 Introduction 53
    3.2 Principle of magnetic suspension 55
    3.3 Realization of zero-power control 56
    3.3.1 Zero-power control in experimental prototype 56
    3.3.2 Zero-power control in model 58
    3.3.3 Zero-power control in controller 59
    3.4 Feasibility analysis of suspension 60
    3.5 Numerical simulation 62
    3.5.1 Simulation conditions 62
    3.5.2 Calculation of feedback gains 63
    3.5.3 Simulation results 64
    3.6 Experimental results 68
    Chapter 4 Non-contact spinning mechanism by using rotary permanent magnets 72
    4.1 Introduction 72
    4.2 Non-contact spinning principle 73
    4.3 Non-contact spinning system 74
    4.3.1 Suspension part 75
    4.3.2 Spinning part 76
    4.3.3 Characteristic experiment 78
    4.4 Mathematical model 80
    4.4.1 Rotational torque modelling 80
    4.4.2 Rotation equation of iron ball 83
    4.5 Spinning examination by numerical simulation 83
    4.5.1 Step response 83
    4.5.2 Velocity in steady state 85
    4.5.3 Relationship between input velocity and output velocity 87
    4.6 Spinning examination by experiments 88
    4.6.1 Step response 89
    4.6.2 Velocity in steady state 91
    4.6.3 Relationship between input velocity and output velocity 92
    Chapter 5 Performance analysis of non-contact spinning mechanism 95
    5.1 Introduction 95
    5.2 Magnetic field examination by IEM analysis 96
    5.2.1 Analysis by using one magnet only 96
    5.2.2 Analysis by using two magnets (I and III) 99
    5.2.3 Analysis by using four magnets 101
    5.3 Simulation examination of rotational torque of iron ball 104
    5.4 IEM analysis of rotational torque of iron ball 109
    5.4.1 Modelling the remnant magnetization points 109
    5.4.2 IEM analysis model and results 110
    5.4.3 Rotational torque in stable rotational state 113
    5.4.4 Horizontal force 113
    5.5 Experimental measurement of rotational torque 114
    5.5.1 Measurement device set up 114
    5.5.2 Experimental results of rotational torque 115
    Chapter 6 Permanent magnetic suspension system using variable flux-path control method 118
    6.1 Introduction 118
    6.2 Principle of variable flux-path control mechanism 119
    6.3 Experimental prototype 120
    6.4 IEM analysis of the suspension mechanism 122
    6.4.1 Analysis of magnetic flux field 122
    6.4.2 Analysis of magnetic flux density and attractive force 126
    6.5 Basic characteristics examination by experimental measurement 128
    6.5.1 Magnetic flux density of the permanent magnet 128
    6.5.2 Magnetic flux density examination by experiment 129
    6.5.3 Attractive force examination by experiment 130
    6.5.4 Semi-zero suspension force examination by experiment 131
    6.5.5 Experimental examination of rotational torque of magnet 133
    6.6 Mathematical model and feasibility analysis 134
    6.6.1 Modelling suspension force 134
    6.6.2 Modelling rotational torque of permanent magnet 135
    6.6.3 Motion equations of motor and suspended object 135
    6.6.4 Suspension feasibility analysis 136
    6.7 Examination of suspension performance 137
    6.7.1 Control system 138
    6.7.2 Calculation of feedback gains 138
    6.7.3 Simulation results 139
    6.7.4 Experimental suspension results 140
    6.7.5 Examination of semi-zero power suspension characteristic 142
    Chapter 7 Improvement for zero suspension force characteristics of variable flux-path control mechanism 144
    7.1 Introduction 144
    7.2 Performance comparison by IEM analysis 145
    7.2.1 IEM analysis for inserting Ferromagnetic board method 145
    7.2.2 IEM analysis for the special type of permanent magnet method 148
    7.2.3 IEM analysis for extending the length of cores method 153
    7.2.4 IEM analysis for combination method 157
    7.2.5 Comparison of semi-zero attractive force performance 160
    7.3 Performance comparison by experimental examinations 161
    7.3.1 Experimental examinations for the special type of magnet method 161
    7.3.2 Experimental examinations for extending the length of cores method 163
    7.3.3 Experimental examinations for combination method 165
    7.3.4 Comparison of semi-zero attractive force performance 166
    7.4 Suspension examination by using the special type of permanent magnet method 168
    7.4.1 Numerical simulation of suspension 168
    7.4.2 Experimental suspension 169
    Chapter 8 Simultaneous suspension of two iron balls 172
    8.1 Introduction 172
    8.2 Suspension principle 173
    8.3 Experimental prototype 176
    8.3.1 Experimental prototype setup 176
    8.3.2 Control system 177
    8.4 Basic characteristics examination by IEM analysis 178
    8.4.1 Analysis of magnetic flux path 178
    8.4.2 Analysis of magnetic flux density 182
    8.4.3 Analysis of attractive force 183
    8.5 Basic characteristics examination by measurement experiment 185
    8.5.1 Magnetic flux density 185
    8.5.2 Attractive force 187
    8.5.3 Examination of interaction between two iron balls 190
    8.6 Theoretical feasibility analysis 191
    8.6.1 Suspension force modelling 191
    8.6.2 Motion equations of motor and two suspended iron balls 192
    8.6.3 Analysis of controllability 194
    8.7 Numerical simulation examination 195
    8.7.1 Control system 195
    8.7.2 Calculation of feedback gains 196
    8.7.3 Numerical simulation 197
    8.8 Experimental suspension 199
    Chapter 9 General conclusions 203
    References 207
    Index 211
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证