0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 能源与动力工程 > 中国能源报告2018

相同语种的商品

浏览历史

中国能源报告2018


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
中国能源报告2018
  • 书号:9787030592569
    作者:魏一鸣等
  • 外文书名:
  • 装帧:平脊精装
    开本:16
  • 页数:409
    字数:650000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2018-11-01
  • 所属分类:
  • 定价: ¥228.00元
    售价: ¥180.12元
  • 图书介质:
    纸质书

  • 购买数量: 件  商品库存: 1
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

能源密集型部门绿色转型受到国际社会和学术界的广泛关注。钢铁、有色、建材、化工、电力、交通、建筑等能源密集型部门的绿色转型既是当前打好污染防治攻坚战的关键,也是长远建设生态文明的重中之重。本书是《中国能源报告》系列研究报告的第七卷。在新的时代背景下,本报告总结并提炼了世界和中国能源市场的发展态势及出现的新特征,系统分析了“绿色发展”对能源密集型部门的长远影响。在综合评估能源密集型产品和服务需求的基础上,本书对电力、钢铁、水泥、化工、交通、建筑等部门的绿色转型开展研究,并探讨了有关的能源技术、能源政策等问题。
  《中国能源报告》是系列研究报告,自2006年以来,每两年出版一卷。根据国际和国内能源发展形势的变化,每卷选择不同主题,开展有针对性的研究。突出研究的实证性和政策性,为国家相关决策部门提供参考和信息支撑。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    前言
    缩写和缩略语
    第1章 世界与中国能源发展概况 1
    1.1 世界能源发展态势 2
    1.1.1 能源消费增速总体放缓,增量主要来自新兴经济体 2
    1.1.2 化石能源储采比未见明显下降,价格未现长期上涨趋势 3
    1.1.3 化石能源主导地位不变,可再生能源发展迅速 5
    1.1.4 世界油气消费东移,亚太成贸易活跃区 7
    1.1.5 能源强度呈下降趋势,各国降幅差异显著 8
    1.1.6 碳排放量持续攀升,但碳强度呈下降趋势 10
    1.2 世界用能部门发展现状 10
    1.2.1 工业用能快速增长,钢铁成工业部门最大能耗行业 10
    1.2.2 交通用能占比约30%,公路交通占交通能耗比例最大 11
    1.2.3 建筑用能已超工业和交通,居民建筑占建筑能耗的70% 12
    1.2.4 发电结构以燃煤为主,电力是最大碳排放部门 12
    1.3 世界能源新变化和新特点 14
    1.3.1 原油市场基本面得到改善,市场呈复苏态势 14
    1.3.2 全球能源并购复苏,各地区呈差异化发展 15
    1.3.3 可再生发电成本显著下降,投资前景广阔 16
    1.3.4 燃油车开始受到挑战,新能源汽车加快交通能源转型 18
    1.3.5 《巴黎协定》不确定性增大,应对气候变化任重道远 19
    1.4 中国能源发展概况 19
    1.4.1 经济与能源消费增速放缓,煤炭消费比重下降 19
    1.4.2 清洁能源发电比重增加,可再生能源装机份额提升 21
    1.4.3 碳排放总量大,制造业排放占比过半 22
    1.4.4 能源进口量持续增长,全球贸易份额比重下降 23
    1.4.5 能源流向结构与发达国家显著不同,工业用能占比高 25
    1.5 中国能源发展新变化与新格局 26
    1.5.1 “4045”碳强度目标提前实现,主动减排格局形成 26
    1.5.2 北方地区大力推进清洁取暖行动 27
    1.5.3 促进乡村振兴战略与低碳发展战略高度融合迫在眉睫 28
    1.5.4 全国碳排放交易体系正式启动 29
    1.5.5 原油期货交易助推人民币国际化和对外开放 31
    1.5.6 新能源汽车发展迅猛 31
    第2章 中国能源密集型部门绿色转型的机遇和挑战 33
    2.1 能源密集型部门绿色转型的迫切需要 34
    2.1.1 绿色发展要求促进“绿色经济”转型 34
    2.1.2 技术进步促使节能减排稳步推进 36
    2.1.3 我国能源密集型部门能效不及国际水平 39
    2.2 国内能源消费与行业产值预测 43
    2.2.1 全国GDP总量将稳步增长,2035年前增长势头良好 43
    2.2.2 能源消费总量预计满足“十三五”规划,未超50亿吨标准煤 44
    2.2.3 能源密集型部门增加值上升,2030年行业增加值将近25万亿 44
    2.3 能源密集型部门绿色转型的机遇 45
    2.3.1 全球经济带动行业变革,“一带一路”带来新契机 45
    2.3.2 供给侧改革带来变革机遇,“中国制造2025”推动产业结构转型 46
    2.3.3 技术进步推动行业高能效化,智能化趋势已在制造业凸显 46
    2.3.4 绿色发展理念推动低碳转型,智慧建筑成为建筑业新趋势 47
    2.3.5 新兴能源密集型部门逐渐产生,信息时代诞生能源密集型新产业 47
    2.4 能源密集型部门绿色转型的挑战 48
    2.4.1 生态文明建设提出新要求,替代产业规模化发展需未雨绸缪 48
    2.4.2 消费结构升级拉动制造业需求,终端电力消费量将显著增加 48
    2.4.3 贸易保护主义抬头,能源密集型部门发展受限 49
    2.4.4 欧洲地缘政治影响出口,新兴经济体竞争带来新挑战 49
    2.4.5 人工智能发展影响能源密集型部门,电力行业需加速智能化发展 50
    2.5 本章小结 50
    第3章 能源密集型部门绿色发展水平评估 52
    3.1 能源密集型部门绿色发展现状 53
    3.1.1 能源密集型部门绿色发展与可持续发展 53
    3.1.2 能源密集型部门绿色发展符合国家政策需求 53
    3.2 中国能源密集型部门绿色发展评估 54
    3.2.1 能源密集型部门绿色发展评估概述 54
    3.2.2 能源密集型部门绿色发展评估指标 55
    3.2.3 能源密集型部门绿色发展评估方法 57
    3.3 中国能源密集型部门绿色发展水平与定位 59
    3.3.1 绿色发展静态水平相对较好,但与世界最先进水平仍有差距 60
    3.3.2 绿色发展动态进步情况不容乐观,环境状况亟待改善 61
    3.4 中国代表性能源密集型部门绿色发展评价 64
    3.4.1 电力行业绿色转型迅速,存在进一步的改进空间 64
    3.4.2 钢铁行业绿色转型快速,仍有一定的发展空间 66
    3.4.3 水泥行业绿色转型平稳,转型速度比较缓慢 68
    3.4.4 化工行业绿色转型较快,与国际先进水平差距明显 69
    3.4.5 交通部门绿色转型艰难,转型过程易出现停滞甚至反弹 71
    3.5 本章小结 72
    第4章 社会经济绿色转型对能源密集型产品和服务的需求 75
    4.1 中国社会经济发展图景 76
    4.1.1 人口总量及年龄结构 76
    4.1.2 城镇化水平 78
    4.1.3 经济总量、产业结构及经济发展驱动因素 80
    4.1.4 建筑规模 83
    4.1.5 交通基础设施规模 84
    4.2 社会经济绿色转型驱动中国电力需求增速放缓 85
    4.2.1 电力需求目前处于快速上涨阶段 85
    4.2.2 多重因素影响未来电力需求变动趋势 86
    4.2.3 未来电力需求将持续增加并在2040年饱和 90
    4.3 社会经济绿色转型对钢铁需求的变化影响显著 93
    4.3.1 社会经济模式影响钢铁存量 93
    4.3.2 钢铁需求有望于2020年前达到峰值 94
    4.3.3 未来十年内钢铁需求将持续下降 100
    4.4 社会经济绿色转型推动水泥产量下降 102
    4.4.1 人均水泥产量长期居高 102
    4.4.2 住房规模及公路建设影响水泥产量 103
    4.4.3 水泥产量已达峰 106
    4.5 社会经济绿色转型将推动化工产品产量和结构变化 108
    4.5.1 化工产品产量与经济增长强相关 108
    4.5.2 高端化工产品需求增速将超传统产品 110
    4.6 社会经济绿色转型影响客运交通需求 111
    4.6.1 城市客运交通出行需求持续增长 111
    4.6.2 城际客运保持稳步增长态势 115
    4.6.3 民航客运增长势头强劲 117
    4.6.4 低碳城市交通迎来新机遇 120
    4.7 本章小结 121
    第5章 中国电力行业绿色转型的路径选择和潜力评估 127
    5.1 电力行业绿色发展现状 128
    5.1.1 装机容量稳步增长,电源结构有待优化 128
    5.1.2 供电煤耗持续下降,排放强度仍然较高 130
    5.1.3 发电技术不断提升,清洁低碳成为发展核心 134
    5.2 推广先进技术提高发电效率 136
    5.2.1 加速淘汰落后技术,提高新建机组准入门槛 137
    5.2.2 加强技术革新,提升电力行业减排潜力 138
    5.2.3 提升效率助力绿色发展,华北地区减排显著 139
    5.3 实施能源替代优化发电结构 141
    5.3.1 加快降低可再生能源发电成本,持续优化区域资源配置 141
    5.3.2 大幅推广可再生能源发电,降低燃煤发电占比 143
    5.3.3 提高可再生能源利用效率,加大区域减排贡献 145
    5.3.4 协调推进各区域节能降耗工作,重点改善电源结构 145
    5.4 市场化改革助力电力系统绿色转型 147
    5.4.1 电力系统复杂特殊,绿色转型需要完善市场机制 147
    5.4.2 新电改拉开序幕,凸显绿色电力技术价值 148
    5.4.3 创新电力行业运营模式,提高电力系统效率 150
    5.4.4 优化电改试点,加速绿色转型 152
    5.5 中国电力行业绿色转型潜力评估 152
    5.5.1 电力行业碳排放有望于2023年达峰 153
    5.5.2 生产端和消费端共促能源消费大幅降低 156
    5.5.3 非化石能源发电量占比将于2029年过半 158
    5.5.4 扩大清洁电力跨区域传输规模有助于绿色转型 161
    5.5.5 太阳能技术或成发展重点 162
    5.6 本章小结 165
    第6章 中国钢铁行业绿色转型:发展节能技术是关键 167
    6.1 钢铁行业绿色发展现状 168
    6.1.1 供求市场趋于缓和,产能利用率小幅回升 168
    6.1.2 电炉钢占比较低,钢铁绿色转型技术依赖性强 169
    6.1.3 钢铁行业减排政策力度加大,化解过剩产能是首要任务 172
    6.2 淘汰落后产能政策可大幅提高行业能效 173
    6.2.1 设备大型化是钢铁节能的主要方式 174
    6.2.2 加速淘汰落后产能减排效果显著 175
    6.3 发展短流程炼钢将优化钢铁生产结构 176
    6.3.1 电弧炉发展或成趋势 176
    6.3.2 重视短流程过程中重金属排放 176
    6.4 节能技术改造可实现能源回收利用 178
    6.4.1 降低烧结机漏风率并推广高炉喷煤技术 178
    6.4.2 研发污染物的脱除技术促进污染物协同治理 180
    6.5 钢铁行业综合绿色政策发展潜力和效果分析 180
    6.5.1 利用技术创新促使钢铁行业排放尽快达峰 180
    6.5.2 重点防治有毒重金属 182
    6.5.3 综合策略促进减排成本下降 187
    6.5.4 降低成本是推广节能技术关键 188
    6.6 本章小结 189
    第7章 中国水泥行业绿色转型:推进现有技术节能改造是重点 191
    7.1 水泥行业绿色发展现状 192
    7.1.1 综合能耗不断下降 192
    7.1.2 碳排放量位居工业部门首位 193
    7.1.3 烟粉尘是最典型的污染物 195
    7.1.4 发展燃料及原料替代是新途径 197
    7.2 推广先进技术可有效实现节能减排 199
    7.2.1 引入先进技术实现国家规划目标 200
    7.2.2 改进技术和智能技术是发展重点 202
    7.2.3 利用技术变革推动生产清洁化 205
    7.3 使用替代燃料可促进节能减排与危废处理协同发展 207
    7.3.1 协同处置生活垃圾提高单位熟料节能量 208
    7.3.2 改变燃料结构提高节能比例 210
    7.3.3 提升替代燃料率降低碳排放量 211
    7.4 发展原料替代降低水泥最高过程排放量 212
    7.4.1 发展电石制水泥降低能耗和排放 212
    7.4.2 新型低碳水泥直接减少过程排放量 215
    7.5 水泥行业绿色转型潜力及综合效果分析 217
    7.5.1 多种策略降低能源消耗及排放 217
    7.5.2 低需求路径下的累计污染物减排最大 219
    7.5.3 高需求路径实现单位减排成本最优 220
    7.5.4 短期推广节能改进技术为主,长期发展替代燃料与原料 221
    7.6 本章小结 224
    第8章 中国化工行业绿色转型:转变生产方式是核心 226
    8.1 化工行业绿色发展现状 227
    8.1.1 化工行业产品繁多且体量巨大 227
    8.1.2 化工行业总体能源消费持续增加且单产能耗落后国际先进水平 229
    8.1.3 二氧化碳及污染物排放位居中国工业前列 231
    8.1.4 “大而不强”迫使化工行业推进绿色转型 232
    8.2 调整生产方式对绿色转型影响尤其显著 236
    8.2.1 构建乙烯生产的三级能源技术选择框架 237
    8.2.2 生产方式清洁化发展可有效促进节能减排 238
    8.2.3 煤制烯烃将对能耗和碳排放总量贡献过半 239
    8.2.4 促进蒸汽裂解应用并适量发展外购甲醇制烯烃 241
    8.3 优化生产工艺促进节能减排 242
    8.3.1 推进先进技术可降低单位能耗与排放,甲醇制烯烃方式降幅最大 243
    8.3.2 能耗与排放总量有望达峰,但节能减排潜力有限 244
    8.4 乙烯工业绿色转型的减排潜力及综合效果 246
    8.4.1 需求与生产方式调整促进乙烯工业实现绿色发展 247
    8.4.2 裂解原料结构与煤气化方式需调整 251
    8.4.3 碳减排随乙烯生产成本上升而有望实现收益 252
    8.4.4 长期能耗排放达峰取决于关键技术的突破 254
    8.5 本章小结 255
    第9章 中国客运交通部门绿色转型:优化运输结构先行 256
    9.1 交通客运部门绿色发展现状 257
    9.1.1 我国交通部门能耗增长迅速 257
    9.1.2 绿色交通清洁能源使用大势所趋 262
    9.2 运输燃料技术升级是推进单位能耗和排放下降的主要手段 267
    9.2.1 提高机动车燃料效率促进城市客运交通能耗与排放达峰 268
    9.2.2 加速淘汰技术落后运输装备 271
    9.3 引导低碳出行是调整交通客运结构重要途径 273
    9.3.1 调高公共交通分担率促进节能减排 273
    9.3.2 发挥铁路旅客运输优势优化交通运输结构 275
    9.3.3 引导低耗能出行促进城际交通节能减排 277
    9.4 加快新能源在交通部门的应用 278
    9.4.1 多措并举促进新能源汽车推广应用 278
    9.4.2 降低电池成本提高新能源汽车市场占有率 279
    9.4.3 发展清洁燃料减排效果有限 280
    9.4.4 加速城际交通新能源商业化应用 282
    9.4.5 突破航空生物燃料瓶颈 283
    9.5 多措施联动实现中国客运交通绿色转型 285
    9.5.1 城市客运需求发展与能耗和排放脱钩 285
    9.5.2 推广清洁能源实现城市客运交通燃料结构电气化 286
    9.5.3 优化城市客运交通出行模式提高综合运输效率 287
    9.5.4 控制机动车污染物排放有效提高环境效益 289
    9.5.5 城际客运交通有望在2035~2045年达峰 290
    9.5.6 航空与公路运输仍是排放的重点行业 293
    9.6 本章小结 295
    第10章 建筑部门绿色转型:构建建筑节能技术体系 298
    10.1 建筑部门绿色发展现状 299
    10.1.1 建筑能耗总量世界第一且仍具有较大的增长空间 299
    10.1.2 居民用能设备持续增长 300
    10.1.3 城镇化和经济转型将导致建筑能耗进一步增长 301
    10.1.4 公共建筑节能效果显著 302
    10.1.5 农村建筑节能问题不容忽视 303
    10.1.6 建筑用能结构向清洁化方向发展 304
    10.1.7 提升建筑能效成为关键 305
    10.2 中国建筑能耗影响因素分析 305
    10.2.1 人均建筑面积是驱动建筑能耗增长的关键因素 306
    10.2.2 经济发展水平直接影响建筑能耗 307
    10.2.3 建筑能效提升是降低建筑能耗之本 307
    10.2.4 重点关注城乡结构变化对建筑能耗影响 308
    10.2.5 产业结构对未来建筑能耗的影响不容忽视 309
    10.3 城乡居民节能行为与建筑部门绿色转型 309
    10.3.1 居民能源消费行为受时空及设备影响大 310
    10.3.2 居民能源消费行为受性别影响最为显著 313
    10.3.3 节能设备的使用可显著降低能耗 316
    10.3.4 固体燃料在农村使用普遍,推动居民燃料选择清洁化具有重要意义 318
    10.4 中国建筑部门绿色转型潜力分析 325
    10.4.1 建筑能耗有望在约2040年达峰 325
    10.4.2 能耗强度下降节能潜力大 326
    10.5 本章小结 327
    第11章 中国能源密集型部门绿色技术预见 329
    11.1 能源供应技术前瞻 331
    11.1.1 非常规天然气:创新水平井多段压裂技术,提升储层模拟监测技术 331
    11.1.2 核能发电:聚焦第四代核电技术,探索可控核聚变技术 333
    11.1.3 分布式发电:短期发展分布式光伏发电,强化协同调度能力 336
    11.1.4 交通生物燃料:主要发展生物乙醇技术,持续探索生物甲烷技术 339
    11.2 能源加工转换及储运技术前瞻 342
    11.2.1 储能技术:研发先进储能电池技术,攻关关键储能元件 342
    11.2.2 全球能源互联网:发展智能电网技术,突破长距离电力传输技术 345
    11.3 能源使用技术前瞻 347
    11.3.1 工业部门:突破绿色工艺过程技术,发展资源回收利用技术 347
    11.3.2 电动汽车:推广智能车联网技术,研发燃气轮机增程技术 348
    11.3.3 绿色建筑:推广可再生能源建筑技术,健全建筑数据服务体系 350
    11.4 能源末端治理技术前瞻 352
    11.4.1 CCUS:大力示范燃烧后捕集技术,发展强化驱油和咸水层封存技术 352
    11.4.2 多污染物协同治理技术:推进多污染物协同治理,积极发展资源化利用技术 355
    11.5 中国能源密集型部门绿色技术的发展重点 357
    11.5.1 工业部门发展应重点提升能效,促进循环利用 357
    11.5.2 交通部门应注重优化市场环境,提供政策激励 357
    11.5.3 建筑部门需制定严格能效标准,推广全生命周期绿色化 357
    11.5.4 电力部门应加强多能互补,实现高效、灵活、安全的供应 358
    第12章 中国能源密集型部门绿色转型政策的政策模拟 359
    12.1 引言 360
    12.2 电力市场改革背景下实施碳定价政策的经济影响模拟 361
    12.2.1 电力价格管制可以保护经济但明显降低碳定价政策的效率 362
    12.2.2 仅针对电力部门的碳定价政策不足以实现全国减排目标 366
    12.2.3 碳定价政策逐步从电力部门推广至全国将加大经济影响,但会降低边际减排成本 367
    12.2.4 优先在非重点用电部门进行电价机制改革 369
    12.3 私人交通推广电动汽车的社会经济影响模拟 372
    12.3.1 退坡补贴电动汽车增长缓慢,占比远低于规划目标 372
    12.3.2 提高接受程度协补贴加速市场渗透,提高电力清洁度收效甚微 373
    12.3.3 提高接受程度协补贴可有效促进CO2减排,提高电力清洁度效果最佳 377
    12.3.4 保持补贴宏观经济、居民福利负面冲击最小,燃油汽车制造业收益均明显受损、转型势在必行 377
    12.4 CCS大规模应用的社会经济效应模拟 379
    12.4.1 征收碳税补贴CCS技术对宏观经济的负面影响最小 379
    12.4.2 CCS的大规模应用会对非金属业利润冲击最大 382
    12.4.3 不同CCS补贴政策的累计减排效果差距较小 383
    12.5 进出口贸易政策对化工行业的社会经济影响 384
    12.5.1 降低进口关税对经济影响最大,取消出口退税影响最小 385
    12.5.2 提高出口关税的部门冲击最大,各调整方案下均应重点关注石油化工 385
    12.5.3 现行进出口调整规划均可降低排放量,但无法实现化工行业碳强度目标 388
    12.6 碳税对能源密集型部门的社会经济影响评估 388
    12.6.1 GDP损失在低碳税税率下随年份先升后降,而在高碳税税率下随年份增大 388
    12.6.2 电力部门市场竞争力受碳税负面冲击最大,而交通部门受冲击最小 389
    12.6.3 建筑部门利润损失明显,而其他能源密集部门利润增加 390
    12.6.4 建筑部门就业损失最为严重,而化工和钢铁部门就业率增加 391
    12.7 本章小结 392
    第13章 政策建议 394
    参考文献 398
    后记 408
    Contents
    Preface
    Abbreviations
    Chapter 1 Energy development in world and China 1
    1.1 Trend of world energy development 2
    1.1.1 The growth rate of energy consumption slows down, and the increased energy consumption comes from emerging economies 2
    1.1.2 Fossil energy reserve to production ratio is stable, and the prices are not continuously growing 3
    1.1.3 Fossil energy dominates the world’s energy consumption, but the renewable energy develops quickly 5
    1.1.4 World oil and gas consumption moves eastward, and Asia-Pacific region becomes an active trade zone 7
    1.1.5 Energy intensity experiences a declining trend and varies among countries 8
    1.1.6 Carbon emissions increase continuously, but the carbon intensity declines 10
    1.2 Status quo of world energy use by sector 10
    1.2.1 Industrial energy consumption increases rapidly, among which iron and steel industry is the largest energy consumer 10
    1.2.2 Energy use for transport sector accounts for 30%, and road transport energy use takes the largest proportion 11
    1.2.3 Building energy use surpasses the industrial and transport energy use, and the residential building energy use accounts for 70% 12
    1.2.4 The power generation is dominated by coal, and power sector becomes the largest carbon emitter 12
    1.3 The new changes and new characteristics in the world energy 14
    1.3.1 The fundamentals of crude oil market have improved, and the market is recovering 14
    1.3.2 Global energy mergers and acquisitions are recovering, but with different regional perfor-mances 15
    1.3.3 The costs of renewable power generation decrease dramatically, and investment prospects are broad 16
    1.3.4 Fossil fuel vehicles are facing a big challenge, while new energy vehicles boost energy transi-tion in the transport sector 18
    1.3.5 The uncertainty of the Paris Agreement is increasing, and coping with climate change is still a long way off 19
    1.4 Overview of Energy Development in China 19
    1.4.1 Economic and energy consumption growth slows down, and proportion of coal consumption declines 19
    1.4.2 The proportion of clean energy power generation and the share of renewable energy installed capacity increase 21
    1.4.3 Carbon dioxide emissions are growing faster and that from manufacturing account for more than half of the total 22
    1.4.4 Energy imports grow but its share in global trade declines 23
    1.4.5 Energy flow differs from developed countries and the proportion of industrial energy consumption is very high 25
    1.5 New Changes and New Patterns of Energy Development in China 26
    1.5.1 The “4045” carbon intensity target is realized ahead of schedule, active emission reduction pattern has been formed 26
    1.5.2 Clean heating operations were promoted vigorously in northern China 27
    1.5.3 Promoting a high degree of integration between rural revitalization strategies and low-carbon development is imminent 28
    1.5.4 The national carbon emissions trading system officially launched 29
    1.5.5 Crude oil futures trading boosts RMB internationalization and opening up 31
    1.5.6 The rapid development of new energy automotive industry 31
    Chapter 2 The opportunities and challenges of green transition in China’s energy intensive sectors 33
    2.1 The urgent need for green transition in energy intensive sectors 34
    2.1.1 Green development accelerates green economy transformation 34
    2.1.2 Technological progress promotes energy saving and emission reduction steadily 36
    2.1.3 Energy efficiency is inferior of China's energy intensive sectors is inferior to international level 39
    2.2 Forecast of domestic energy consumption and industry output 43
    2.2.1 The national GDP will increase steadily and the trend will remain positive by 2035 43
    2.2.2 The total energy consumption is expected to meet the goal of the “13th Five-Year Plan” and not exceed 5 billion tce 44
    2.2.3 The value-added in energy intensive sectors will raise, and reach nearly 25 trillion in 2030 44
    2.3 Opportunities of green transition in energy intensive sectors 45
    2.3.1 Global economy leads to industrial transition, “One Belt One Road” initiative brings new chance 45
    2.3.2 Supply-side reform brings reform opportunities, China 2025 promotes industrial structure transition 46
    2.3.3 Technology progress promotes high-efficient industry, and the usage of artificial intelligence has become a global trend in manufacturing 46
    2.3.4 Green development promotes low-carbon transition, and smart building has become a new trend of construction industry 47
    2.3.5 New energy intensive sectors are emerging, and the information age has triggered new energy intensive industries 47
    2.4 Challenges of green transition in energy intensive sectors 48
    2.4.1 New requirements are put forward for ecological civilization, and the large-scale development of alternative industries needs to be prepared in advance 48
    2.4.2 The upgrading of consumption structure will drive the demand of manufacturing, and the end-use electricity consumption will increase significantly 48
    2.4.3 Trade protectionism is on the rise, which poses restriction on the development of energy intensive sectors 49
    2.4.4 Politics in Europe affects exports, and competition in emerging economies brings new challenges 49
    2.4.5 The development of artificial intelligence influences energy intensive sectors, and more intelligent progress should be included into the power industry 50
    2.5 Summary 50
    Chapter 3 Green development assessment for energy intensive sector 52
    3.1 Green development status quo of energy intensive sector 53
    3.1.1 Green development and sustainable development of energy intensive sector 53
    3.1.2 Green development policies of energy intensive sector 53
    3.2 Green development indicators and assessment methods for energy intensive sector 54
    3.2.1 Overview 54
    3.2.2 Green development indicators of energy intensive sector 55
    3.2.3 Green development assessment methods for energy intensive sector 57
    3.3 Green development level and global position of China’s energy intensive sector 59
    3.3.1 China’s static green development level is above average, but far from the global advanced level 60
    3.3.2 China’s green development progress is not optimistic, and the environmental condition is urgent to be improved 61
    3.4 Green development assessment for China’s representative energy intensive industries 64
    3.4.1 Green development of the power industry is rapid, but still has potential for further improvement 64
    3.4.2 Green development of the steel industry is fast, but still need improvement 66
    3.4.3 Green development of the cement industry is stable, but the development speed is slow 68
    3.4.4 Green development of the chemical industry is relatively fast, but with big gap compared with international advanced level is obvious 69
    3.4.5 Green development of the transportation sector is hard, and it is prone to stagnate and even retrogress 71
    3.5 Summary 72
    Chapter 4 Demand for energy-intensive products and services along with social and economic transformation 75
    4.1 Prospect of social and economic development in China 76
    4.1.1 Total population and its structure 76
    4.1.2 The level of urbanization 78
    4.1.3 Economy, industrial structure and economic development drivers 80
    4.1.4 Building scale 83
    4.1.5 Transportation infrastructure scale 84
    4.2 Transition towards a green socio-economy will slow the growth of China’s electricity demand 85
    4.2.1 Electricity demand is currently in a fast-growing phase 85
    4.2.2 Multiple factors affect the trend of electricity demand 86
    4.2.3 Electricity demand will continue to increase until 2040 90
    4.3 Transition towards a green socio-economy will have a significant impact on the steel demand 93
    4.3.1 Socio-economic pattens affect steel stock 93
    4.3.2 Steel demand is likely to peak at 2020 94
    4.3.3 Steel demand will continue to decline in the next decade 100
    4.4 Transition towards a green socio-economy will promote the decline of cement production 102
    4.4.1 Per capita cement production is at a large value for a long time 102
    4.4.2 Housing scale and road construction affect cement production 103
    4.4.3 Cement production has reached the peak 106
    4.5 Transition towards a green socio-economy will trigger the production and structural changes of chemical products 108
    4.5.1 Production of Chemical products are strongly correlated with economic growth 108
    4.5.2 Demand for premium chemical products will grow faster than traditional products 110
    4.6 Transition towards a green socio-economy will affect passenger travel demand 111
    4.6.1 Urban passenger travel demand continues to grow 111
    4.6.2 Intercity passenger transport will increase steadily in the long term 115
    4.6.3 Air passenger transport is projected to expand dramatically 117
    4.6.4 Low-carbon urban transportation is embracing new opportunities in the era of Internet 120
    4.7 Summary 121
    Chapter 5 Transition pathways to a green power industry in China 127
    5.1 Status quo of green development in the power sector 128
    5.1.1 Installed capacity will be steadily increasing while power mix needs to be optimized 128
    5.1.2 Coal consumption per kWh continuously declines while emission intensity is still at a high level 130
    5.1.3 Power generation technologies continues to upgrade and low-carbon technologies are the core 134
    5.2 Promote advanced technologies to increase the efficiency of power generation 136
    5.2.1 Accelerate the phase-out of backward technologies and increase the threshold for newly-built technologies 137
    5.2.2 Strengthen technological innovation and increase the potential for emissions reduction 138
    5.2.3 Increasing the energy efficiency promotes the green development with the north region contributing the most 139
    5.3 Implement energy substitution to optimize the structure of power generation 141
    5.3.1 Speed up the cost reduction of renewable energy and continue to optimize the regional resource allocation 141
    5.3.2 Expand renewable energy generation substantially and reduce the share of coal-fired power generation 143
    5.3.3 Improve the utilization efficiency of renewable energy and increase regional contributions to emissions reduction 145
    5.3.4 Promote energy conservation and consumption reduction coordinately in six regions and improve the structure of power generation 145
    5.4 Electricity market reform will facilitate the green transition 147
    5.4.1 Market mechanism needs to be improved for the green transition considering its complexity and uniqueness 147
    5.4.2 New electricity market reform enlarges the value of green technologies 148
    5.4.3 Innovating the business models helps improving the efficiency of the power system 150
    5.4.4 Optimizing market pilots of electricity market reform stimulates the green transition 152
    5.5 Potential assessment of green transition in China’s power industry 152
    5.5.1 Carbon emission of China’s power industry is expected to peak at 2023 153
    5.5.2 Joint efforts from supply-side and demand-side are required for energy saving 156
    5.5.3 Share of non-fossil energy power generation will be more than half by 2029 158
    5.5.4 Scale of inter-regional transmission of clean power needs to be expanded 161
    5.5.5 Promoting the development of solar power generation technology may become the main direction 162
    5.6 Summary 165
    Chapter 6 Transition towards a green iron and steel industry in China: promoting the energy-saving technologies is the key 167
    6.1 Status quo of green development in the iron and steel industry 168
    6.1.1 Supply and demand market tends to ease and capacity utilization efficiency slightly increases 168
    6.1.2 Proportion of electric-arc furnace steelmaking is relatively low, and the green transition of iron and steel industry is highly dependent on technologies 169
    6.1.3 Emission reduction policies for iron and steel industry have been strengthened, and cutting overcapacity is the priority 172
    6.2 Eliminating backward production capacity can substantially improve the energy efficiency 173
    6.2.1 Upgrading to large-scale equipments are the main way to save energy in the iron and steel industry 174
    6.2.2 Accelerating the phase-out of backward production capacity has significant impact on emission reduction 175
    6.3 Development of electric-arc furnace steelmaking helps optimize the structure of steel production 176
    6.3.1 Electric-arc furnace development tends to be the mainstream 176
    6.3.2 Heavy metal emissions during electric-arc furnace steelmaking needs to be controlled 176
    6.4 Energy-saving technologies can realize energy recycling 178
    6.4.1 Reduce sintering leakage rate and promote pulverized coal injection technology 178
    6.4.2 Research and develop the pollutant removal technology to promote the coordinated abatement of pollutants 180
    6.5 Potential effect of comprehensive policies on the green development in China’s iron and steel industry 180
    6.5.1 Innovate the technologies to speed up the peak of emissions 180
    6.5.2 Highlight the prevention and control of toxic heavy metals 182
    6.5.3 Implement the comprehensive strategy to reduce the abatement costs 187
    6.5.4 Reducing costs is the key to promote energy-saving technologies 188
    6.6 Summary 189
    Chapter 7 Transition towards a green cement industry in China: Promoting the energy-saving retrofit for existing technologies is the focus 191
    7.1 Status quo of green development in the cement industry 192
    7.1.1 Comprehensive energy consumption continues to decline 192
    7.1.2 Carbon emissions rank top among the industrial sectors 193
    7.1.3 Dust is the most typical pollutant 195
    7.1.4 Development of alternative fuels and raw materials are new instruments 197
    7.2 Promoting advanced technologies can effectively realize energy conservation and emissions reduction 199
    7.2.1 Introducing advanced technology can achieve national planning goals 200
    7.2.2 Upgrading technology and smart technology are the focus of development 202
    7.2.3 Innovating technologies facilitates the cleaner production 205
    7.3 Using alternative fuels can promote the coordinated development of energy and emissions reduction and hazardous waste treatment 207
    7.3.1 Coordinated disposal of domestic waste can increase the energy savings of per unit of clinker 208
    7.3.2 Changing the fuel structure can increase the energy saving ratio 210
    7.3.3 Increasing the rate of alternative fuels can reduce the carbon emissions 211
    7.4 Development of alternative raw materials helps reduce the process-related emissions 212
    7.4.1 Using carbide slag to produce cement can reduce energy consumption and emissions 212
    7.4.2 New types of low-carbon cement can directly reduce process-related emissions 215
    7.5 Potential effect of comprehensive policies on the green development in China’s cement industry 217
    7.5.1 Multiple strategies can substantially reduce energy consumption and emissions 217
    7.5.2 Accumulated pollutant emissions reduction is the largest under the path of low cement demand 219
    7.5.3 Optimal cost per unit emission reduction can be achieved under the path of high cement demand 220
    7.5.4 Promoting energy-saving and upgrading technologies dominants in the short term and developing alternative fuels and raw materials are the trend in the long term 221
    7.6 Summary 222
    Chapter 8 Transition towards a green chemical industry in China: Adjusting the production ways is the core 226
    8.1 Status quo of green development in the chemical industry 227
    8.1.1 Chemical products are in a great variety and in huge volume 227
    8.1.2 Energy consumption in chemical industry continues to increase, and efficiency for producing per ton product is lagging behind international advanced level 229
    8.1.3 Emissions of CO2 and pollutants rank ahead of China's industry 231
    8.1.4 Green transition is necessary because China’s chemical industry is huge but not strong 232
    8.2 Adjusting the production ways is particularly important for green transition 236
    8.2.1 A three-level energy technology selection framework is established for ethylene production 237
    8.2.2 Shifting to clean production ways can effectively promote energy saving and emissions reduction 238
    8.2.3 Coal to olefins contributes more than half of total energy and CO2 emissions 239
    8.2.4 Steam cracking and methanol to olefins could be further promoted 241
    8.3 Optimizing production process can promote energy saving and emissions reduction 242
    8.3.1 Energy consumption and CO2 emissions for producing per ton ethylene can be reduced effectively by promoting advanced technologies especially for methanol to olefins 243
    8.3.2 Energy consumption and total emissions are expected to peak, but with limited potential of energy saving and emissions reduction 244
    8.4 Emission reduction potential of green transition in ethylene industry 246
    8.4.1 Demand and production ways adjustment can promote the green development of ethylene industry 247
    8.4.2 Structure of cracking materials and the gasification ways need to be adjusted 251
    8.4.3 CO2 emission reduction is expected to gain benefit as the increase of ethylene production costs 252
    8.4.4 The peak of long-term energy consumption and emissions depends on the breakthroughs of key technologies 254
    8.5 Summary 255
    Chapter 9 Transition towards a green passenger transport sector in China: Optim-izing transport structure is the priority 256
    9.1 Development status of the passenger transport sector 257
    9.1.1 Energy consumption in China's transportation sector is growing rapidly 257
    9.1.2 Clean energy is the future trend of green transportation 262
    9.2 Fuel technology innovation is an important measure to control energy consumption and reduce emissions 267
    9.2.1 Improve the fuel efficiency of vehicles to accelerate the peak of energy consumption and emissions of urban passenger transport 268
    9.2.2 Accelerate the elimination of inefficient transport technologies 271
    9.3 Encouraging low-carbon travel could help optimize the structure of passenger transport 273
    9.3.1 Promoting public transport will reduce the energy consumption 273
    9.3.2 Railway transport will play a significant role in transport structure adjustment 275
    9.3.3 Intercity passenger transport will achieve greater energy-saving and emission reduction by promoting energy efficient transport modes 275
    9.4 Speed up the application of clean energy in the transport sector 278
    9.4.1 Emerging new energy policies contribute to the popularization of new energy vehicles 278
    9.4.2 Decreasing battery cost will increase the market share of new energy vehicles 279
    9.4.3 Introducing clean fuels has limited effect on the emissions reduction in the urban passenger transport sector 280
    9.4.4 Accelerate the commercial application of new energy in intercity transportation 282
    9.4.5 Breaking through the bottleneck of aviation biofuel can achieve great environmental benefits 283
    9.5 Multiple measures boost the green transition of China’s passenger transport 285
    9.5.1 Urban passenger transport demand will decouple from energy consumption and emissions 285
    9.5.2 Popularizing the clean energy facilitates the electrification of urban passenger transport 286
    9.5.3 Optimizing the travel mode choice to improve the transport efficiency 287
    9.5.4 Controlling the vehicle emissions to generate environmental benefits 289
    9.5.5 Carbon emission of intercity passenger transport is potential to peak by 2035~2045 290
    9.5.6 Air and road transport will still be the main emission sources 293
    9.6 Summary 295
    Chapter 10 Transition towards a green building sector in China: Establishing the energy-saving technology system 298
    10.1 Development status of the building sector 299
    10.1.1 China’s total building energy consumption is the highest in the world 299
    10.1.2 Ownership of domestic appliances continues to grow 300
    10.1.3 Urbanization and economic transformation will further increase the building energy consumption 301
    10.1.4 Energy-saving potential of public buildings is remarkable 302
    10.1.5 Energy conservation for rural buildings should not be neglected 303
    10.1.6 Building energy source is shifting to clean energy 304
    10.1.7 Improving the energy efficiency of buildings is the key 305
    10.2 Driving factors for building energy consumption in China 305
    10.2.1 Per capita floor area is the key factor driving the growth of building energy consumption 306
    10.2.2 Economic development directly affects building energy consumption 307
    10.2.3 Energy efficiency improvement is the core for reducing building energy consumption 307
    10.2.4 Impacts of urban and rural structural changes on building energy consumption deserve attention 308
    10.2.5 Impact of industrial structure change on future building energy consumption cannot be ignored 309
    10.3 Urban and rural residents' energy-saving behavior and green transition of the building sector 309
    10.3.1 Residential energy consumption behavior is greatly affected by time and spatial distribution and equipment 310
    10.3.2 Gender has evident influence on residents’ energy consumption behavior 313
    10.3.3 Introducing energy-saving equipment can significantly reduce energy consumption 316
    10.3.4 Solid fuels are widely used in rural areas and it is of great significance to promote the clean fuel selection for rural residents 318
    10.4 Potential effects of the green transition in China’s building sector 325
    10.4.1 Building energy consumption is expected to peak around 2040 325
    10.4.2 Decreasing the energy intensity has great potential for energy saving 326
    10.5 Summary 327
    Chapter 11 The Green Technology Foresight in China’s Energy Intensive Sectors 329
    11.1 Frontiers of energy supply technology 331
    11.1.1 Unconventional Natural Gas: Innovating Multi-interval fracturing Technique in Horizontal Well, Improving Reservoir Modeling and Monitoring Technologies 331
    11.1.2 Nuclear Power: Advancing the Fourth-generation Technologies, Exploring Controllable Nuclear Fusion Technology 333
    11.1.3 Distributed power generation: Developing Distributed Photovoltaic Power Generation in the Short Term, and enhancing Collaborative Dispatching Capability 336
    11.1.4 Transport Biofuels: Mainly Developing Bioethanol and Bio-methane 339
    11.2 Frontiers of Energy Processing, Conversion and storage technology 342
    11.2.1 Energy Storage: Developing Advanced Energy Storage Battery Technology, tackling key energy storage components 342
    11.2.2 Global Energy Interconnection: Developing Smart Grids, Breaking Through Long-Distance Transmission Technologies 345
    11.3 Frontiers of Energy consumption technology 347
    11.3.1 Industry Sector: Breaking Through the Green process technology, Developing Resource Recycling and Utilization 347
    11.3.2 Electric Vehicles: Promoting Intelligent & Connected Vehicle, Developing Turbine-Recharging 348
    11.3.3 Green Building: Promoting Renewable Energy Building, Improving the Construction of data Service System 350
    11.4 Frontiers of Energy End-of-pipe treatment technology 352
    11.4.1 Carbon Capture, Utilization and Storage: Demonstrating Post-combustion Capture, developing enhanced Oil Recovery and Saline Aquifer Storage 352
    11.4.2 Multi-Pollutant Collaborative Treatment: Promoting Integrated Synergistic Control of Multi-pollutants, Actively Developing Technologies of Resource Utilization 355
    11.5 Keys of Green Technology development in China’s Energy Intensive Sector 357
    11.5.1 Industry sector should focus on improving energy efficiency and promoting recycling 357
    11.5.2 Transport sector should pay attention to optimizing the market environment and providing policy incentives 357
    11.5.3 Building sector should establish strict energy efficiency standards and promote the greening during the life cycle 357
    11.5.4 Power sector should strengthen multi-energy complementarity to achieve efficient, flexible and safe supply 358
    Chapter 12 Simulation of green transition policies on China’s energy intensive sectors 359
    12.1 Introduction 360
    12.2 Economic impact simulation of carbon pricing policy in the context of electricity market reform 361
    12.2.1 Electricity prices regulation can protect the economy but significantly reduce the efficiency of carbon pricing 362
    12.2.2 Carbon pricing policy limited to electricity sector is not enough to achieve national mitigation target 366
    12.2.3 Gradually extending carbon pricing from electricity sector to the whole country would increase economic impact but reduce marginal abatement cost 367
    12.2.4 Priority should be given to electricity price reform in non-key electricity utilization sectors 369
    12.3 The socio-economic impacts of promoting new energy cars on passenger transport in China 372
    12.3.1 Sales electric vehicle would increase slowly with the declining subsidies, and are far below the planning target 372
    12.3.2 Increasing consumer preference and keeping subsidy will accelerate market penetration, while improving electricity cleanliness shows little effect 373
    12.3.3 Increasing consumer preference and keeping subsidy could effectively promote CO2 mitigation, with improvement of electricity cleanliness performing the best 377
    12.3.4 Keeping the subsidy has the least negative effect on macro economy and household welfare. and the transition of gasoline vehicle manufacturing industry is urgent 377
    12.4 The socio-economic impacts of large-scale deployment of CCS 379
    12.4.1 Employing carbon tax revenue to subsidize CCS has the least negative macroeconomic impact 379
    12.4.2 The large-scale application of CCS has the most negative impact on the profit of nonmetal industry 382
    12.4.3 There is no evident difference between the cumulative emission reduction effects of different CCS subsidy policies 383
    12.5 The socio-economic impact of import and export trade policies on the chemical
    industry 384
    12.5.1 Reducing import tariffs has the greatest impact on the economy, while the cancellation of export tax rebates has the least impact 385
    12.5.2 Increasing export tariffs has the greatest impact on the chemical industry, and petrochemicals should be paid special attention 385
    12.5.3 Current import and export adjustment planning can both reduce emissions, but can not achieve the carbon intensity targets of the chemical industry 388
    12.6 Socio-economic impact of carbon tax on energy intensive sectors 388
    12.6.1 GDP loss rises first and then falls if the carbon tax rate is low, but increases overtime if the carbon tax rate is high 388
    12.6.2 The competitiveness of power sector suffers the most negative impact from carbon tax, while the transportation sector suffers the least 389
    12.6.3 The profits of building sector loss while profits of other energy intensive sectors gain 390
    12.6.4 The employment losses in building sector are the most serious, while employment in the chemical and steel sectors is increasing 391
    12.7 Summary 392
    Chapter 13 Policy implication 394
    References 398
    Epilogue 408
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证