0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 农业科学 > 水产/渔业 > 水产养殖生态学

相同作者的商品

相同语种的商品

浏览历史

水产养殖生态学


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
水产养殖生态学
  • 书号:9787030517340
    作者:董双林,田相利,高勤峰
  • 外文书名:
  • 装帧:平装
    开本:16
  • 页数:392
    字数:530
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2017-03-24
  • 所属分类:
  • 定价: ¥128.00元
    售价: ¥101.12元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书是国内外第一部水产养殖生态学教材,反映了我国作为世界第一水产养殖大国为步入可持续发展之路而进行的系统性探索。我国水产养殖模式在世界上最为多样,遇到的和已研究的问题也最多,因此,本书对其他国家也有借鉴价值。本书在水产养殖生态学方面的特色主要表现为:研究对象的复杂性和多样性、研究对象的多功能性、服务于产业发展的应用性和学科交叉性。本书内容既考虑长远也关注当下,探讨增产、节能、减排三者综合效益的最大化,探讨在食物生产与环境保护间求得平衡或共赢的原理。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目 录
    前言
    第 1 章 绪论 1
    1.1 水产养殖与水产养殖生态学 1
    1.2 水产养殖生态学的形成和发展 2
    1.3 我国水产养殖业面临的问题和可持续发展 5
    1.3.1 我国水产养殖业的现状和发展趋势 5
    1.3.2 我国水产养殖业发展面临的主要问题 9
    1.3.3 先辈们的智慧及其启示 10
    1.3.4 水产养殖业的健康发展 12
    1.4 水产养殖生态学的研究方向和特色 16
    1.4.1 水产养殖生态学的研究方向 17
    1.4.2 水产养殖生态学的特色 17
    第 2 章 水产养殖生态系统 22
    2.1 水产养殖系统的分类 22
    2.1.1 水产养殖系统的传统分类 22
    2.1.2 基于系统能量来源的分类 23
    2.1.3 基于系统代谢特征的分类 25
    2.1.4 基于生态限制因子的分类 26
    2.2 水产养殖生物的主要物理环境 30
    2.2.1 水的物理特性 31
    2.2.2 水体的光照 31
    2.2.3 水体的温度 35
    2.2.4 水体的含盐量 40
    2.3 水产养殖生物的主要化学环境 43
    2.3.1 溶解氧 43
    2.3.2 PH及其缓冲系统 49
    2.3.3 氨与硫化氢 50
    2.4 养殖水体间生态学差异 52
    2.4.1 水库生态连续体 52
    2.4.2 养殖水体的生态学差异 57
    2.4.3 养殖水体的限制性营养元素和生态演替 58
    2.5 水产养殖生态系统的生态金字塔 61
    第 3 章 养殖池塘系统生物群落与食物网结构 64
    3.1 养殖池塘的生物群落 64
    3.1.1 生物群落的概念 64
    3.1.2 生物群落结构的计算方法 65
    3.1.3 水产养殖活动对生物群落结构的影响 66
    3.2 水产养殖池塘的食物网结构 71
    3.2.1 食物网的概念 71
    3.2.2 食物网结构分析方法 72
    3.2.3 水产养殖系统食物网结构 73
    第 4 章 养殖水体的生产力与养殖容量 78
    4.1 养殖水体生产力和养殖容量及其影响因素 78
    4.1.1 养殖水体的生产力 79
    4.1.2 养殖水体的养殖容量 79
    4.1.3 影响生产力的因素 80
    4.1.4 影响养殖容量的因素 83
    4.2 养殖水体生产力评估 83
    4.2.1 池塘养殖生产力评估 83
    4.2.2 大型水体养殖生产力评估 87
    4.3 水体养殖容量评估 94
    4.3.1 海湾海带养殖容量评估 94
    4.3.2 开放海域扇贝养殖容量评估 95
    4.3.3 湖泊河蟹养殖容量评估 97
    4.3.4 海水池塘对虾养殖容量评估 98
    4.3.5 大水域养殖容量评估 101
    第 5 章 水产养殖与环境的相互作用 104
    5.1 水产养殖对水质的要求 104
    5.2 外源污染物对水产养殖的影响 105
    5.2.1 来源于农业和城市排污的营养物质 105
    5.2.2 有害水华(赤潮) 106
    5.2.3 油污染 107
    5.2.4 重金属 107
    5.2.5 杀虫剂和有机锡(TBT) 108
    5.3 水产养殖对环境的负面影响 109
    5.3.1 沉积作用及对水流的阻碍 109
    5.3.2 富营养化 110
    5.3.3 化学物质 112
    5.3.4 外来物种入侵与养殖鱼类逃逸 115
    5.3.5 红树林破坏 117
    5.3.6 水产养殖与其他用途的矛盾 117
    5.4 水产养殖与温室气体排放 117
    5.4.1 水产养殖的直接能耗及碳排放 118
    5.4.2 养殖生物捕获产生的碳输出 120
    5.4.3 养殖水体对碳的封存 120
    5.4.4 池塘水-气界面温室气体通量 123
    5.4.5 碳汇渔业 125
    第 6 章 水产养殖动物的生长 128
    6.1 水生动物的生长模式 128
    6.1.1 水生动物生长的特点和个体大小 128
    6.1.2 水生动物的生长模型 130
    6.2 温度对水产养殖动物生长的影响 133
    6.2.1 水生动物对温度的适应性 134
    6.2.2 水温对养殖动物生长的影响 135
    6.3 含盐量对水产养殖动物生长的影响 139
    6.3.1 水生动物对含盐量的适应性 139
    6.3.2 含盐量对养殖动物生长的影响 141
    6.4 光照对水产养殖动物生长的影响 143
    6.4.1 水生动物对光照的适应性 143
    6.4.2 光照对养殖动物生长的影响 145
    6.5 刺参生长的个体变异 149
    6.5.1 密度和规格对刺参个体生长变异的影响 149
    6.5.2 单个体饲养条件下刺参的个体生长变异 152
    6.5.3 物理接触对刺参个体生长变异的影响 154
    6.6 周期性饥饿后水生动物的补偿生长 156
    6.6.1 水生动物的补偿生长现象 156
    6.6.2 水生动物补偿生长程度和变化特点 157
    6.6.3 周期性饥饿后水生动物的补偿生长 158
    6.6.4 影响补偿生长的因素 159
    6.6.5 补偿生长的生理机制 166
    6.6.6 补偿生长理论应用实践 166
    第 7 章 环境因子周期性波动对水生生物的影响 168
    7.1 温度周期性波动对水生生物生长的影响 168
    7.1.1 温度日节律性波动对大型海藻的影响 169
    7.1.2 温度周期性波动对水生动物的影响 170
    7.2 盐度周期性波动对水生生物生长的影响 178
    7.2.1 盐度周期性波动对大型海藻的影响 179
    7.2.2 盐度周期性波动对水生动物的影响 179
    7.3 周期性干出对大型海藻生长的影响 182
    7.4 光照节律性波动对水生生物的影响 184
    7.4.1 光照节律性波动对孔石莼的影响 184
    7.4.2 光照节律性波动对对虾的影响 187
    7.5 水环境中 Ca2+浓度波动对凡纳滨对虾的影响 189
    7.6 水环境PH波动对凡纳滨对虾的影响 191
    7.6.1 PH 变动幅度对凡纳滨对虾生长和能量收支的影响 191
    7.6.2 PH变动周期对凡纳滨对虾生长的影响 192
    第 8 章 养殖水质的生物调控 194
    8.1 水域生态系统的生物操纵 194
    8.2 浮游植物的生产及其限制因子 197
    8.2.1 浮游植物的光合作用和呼吸作用 197
    8.2.2 影响浮游植物生长的主要理化因子 198
    8.2.3 施肥池塘中浮游植物与渔产量的关系 201
    8.2.4 养殖池塘中的浮游植物群落 202
    8.3 大型海藻营养吸收动力学 204
    8.3.1 大型海藻的营养需求 204
    8.3.2 铁限制对大型海藻的影响 205
    8.3.3 大型海藻对氮的吸收动力学 207
    8.3.4 大型海藻对磷的吸收动力学 212
    8.4 大型海藻与微藻的相互作用 217
    8.4.1 大型海藻与微藻的营养竞争 217
    8.4.2 大型海藻对微藻的克生作用 221
    8.5 滤食性贝类和滤食性鱼类的摄食 224
    8.5.1 滤食性贝类和滤食性鱼类摄食的数学表达 224
    8.5.2 滤食性贝类和滤食性鱼类的摄食能力 227
    8.5.3 滤食性鱼类的摄食节律和对食粒的选择性 233
    8.5.4 滤食性鲢呼吸与摄食的关系 234
    8.6 滤食性贝类的代谢及其对浮游植物的增殖作用 237
    8.6.1 滤食性贝类的呼吸和排泄 237
    8.6.2 滤食性贝类的代谢产物对浮游植物的增殖作用 239
    8.7 滤食性贝类对水质和底质的影响 240
    8.7.1 太平洋牡蛎对养虾池塘水化学状况的影响 240
    8.7.2 太平洋牡蛎对养虾池塘底质的影响 242
    8.7.3 海湾扇贝对养殖池塘水质的影响 243
    8.7.4 菲律宾蛤仔对养殖池塘水质的影响 244
    8.7.5 海湾扇贝、缢蛏、罗非鱼对养虾池塘浮游生物影响的比较 246
    8.8 滤食性鱼类放养对水质的影响 247
    8.8.1 放养滤食性鱼类对水质和浮游生物群落的影响 247
    8.8.2 滤食性动物对养殖水体浮游细菌的影响 251
    8.8.3 放养鲢对水体营养盐分布和物质循环格局的影响 252
    第 9 章 综合水产养殖及其结构优化 254
    9.1 中国综合水产养殖的定义和历史沿革 254
    9.1.1 综合水产养殖的定义 254
    9.1.2 中国综合水产养殖的历史沿革 255
    9.2 综合水产养殖的基本原理 257
    9.2.1 养殖废物的资源化利用 257
    9.2.2 通过互补机制稳定改善水质 258
    9.2.3 养殖水体资源的充分利用 260
    9.2.4 生态防病 262
    9.2.5 综合水产养殖中的辩证思维 262
    9.3 综合水产养殖系统的分类 263
    9.3.1 化学功能互补综合型 264
    9.3.2 养殖种类综合型 265
    9.3.3 系统综合型 267
    9.4 综合水产养殖结构优化的原理和方法 269
    9.4.1 综合水产养殖结构优化的原理 269
    9.4.2 综合水产养殖结构优化的方法 271
    9.5 水库综合养殖结构的优化 273
    9.6 池塘综合养殖结构的优化 275
    9.6.1 草鱼、鲢和鲤综合养殖结构优化 275
    9.6.2 海水对虾池塘综合养殖结构的优化 278
    第 10 章 阳光工厂化养殖原理 282
    10.1 传统工厂化养殖模式 282
    10.2 阳光工厂化养殖原理及模式 284
    10.2.1 阳光工厂化养殖原理 284
    10.2.2 阳光工厂化养殖模式 287
    10.3 阳光工厂化养殖亟待完善的问题 293
    10.3.1 阳光工厂化车间的光照与温度控制技术 294
    10.3.2 适宜养殖种类及适宜配比的优化 294
    10.3.3 不同水生植物混养方式的选择及混养装置的设计 294
    10.3.4 阳光工厂化养殖机制研究 294
    10.3.5 养殖管理的规范化 294
    第 11 章 低洼盐碱地渔业利用的生态学基础 296
    11.1 低洼盐碱地池塘水质和生物环境 297
    11.1.1 低洼盐碱地的基塘系统 297
    11.1.2 低洼盐碱地池塘的水质特点 298
    11.1.3 低洼盐碱地池塘的生物 299
    11.2 养殖动物对盐碱的耐受性 300
    11.2.1 p H 对淡水养殖动物的影响 300
    11.2.2 常见养殖动物对含盐量的耐受性 301
    11.2.3 常见养殖动物对碱度的耐受性 302
    11.3 水环境中阳盐离子对对虾生长的影响 303
    11.3.1 对虾对水体 Na+/K+值的适应性 303
    11.3.2 对虾对水体 Ca2+浓度的适应性 304
    11.3.3 对虾对水体 Mg2+/Ca2+值的适应性 305
    11.4 低洼盐碱地养殖池塘水质调控 305
    11.4.1 滤食性鱼类对盐碱池塘水质的影响及其调控 306
    11.4.2 施 KCl 和 Ca Cl2对盐碱池塘水质的改良作用 309
    11.4.3 施肥对盐碱池塘水质的改良作用 311
    第 12 章 对虾白斑病生态防控原理 313
    12.1 对虾 WSSV 的传播途径 313
    12.1.1 WSSV 的易感动物和宿主 314
    12.1.2 WSSV 的若干传播途径 314
    12.2 对虾白斑病暴发与环境的关系 316
    12.2.1 WSSV 致病性与养殖水体物理环境的关系 316
    12.2.2 WSSV 致病性与养殖水体化学环境的关系 318
    12.2.3 WSSV 致病性与养殖水体生物环境的关系 319
    12.3 对虾白斑病的综合预防 320
    12.3.1 养虾水体的前期处理 320
    12.3.2 对虾养殖的综合防病措施 321
    第 13 章 多维度视角下的水产养殖系统 326
    13.1 水产养殖系统的能值分析 326
    13.1.1 能值分析理论 328
    13.1.2 能值分析的基本步骤和方法 331
    13.1.3 我国三种刺参养殖模式可持续性评估 333
    13.1.4 工厂化养殖大菱鲆和石斑鱼系统的能值分析 337
    13.2 水产养殖系统生命周期评价分析 340
    13.2.1 生命周期评价方法简介 341
    13.2.2 刺参不同养殖系统的生命周期评价 343
    13.2.3 LCA 在水产养殖系统可持续性分析中的作用 346
    13.3 水产养殖系统的碳足迹分析 348
    13.3.1 碳足迹的研究方法简介 348
    13.3.2 三种刺参养殖系统碳足迹分析 349
    参考文献 352
    Contents
    Preface 1
    Introduction 1
    1.1 Aquaculture and aquaculture ecology 1
    1.2 Origination and development of aquaculture ecology 2
    1.3 Problems and healthy development of China’s aquaculture industry 5
    1.3.1 Status and trends of China’s aquaculture development 5
    1.3.2 Major problems facing of China’s aquaculture development 9
    1.3.3 Wisdom of Chinese ancestors enlightenment 10
    1.3.4 Healthy development of China’s aquaculture industry 12
    1.4 Main research areas and characteristics of aquaculture ecology 16
    1.4.1 Main research areas of aquaculture ecology 17
    1.4.2 Characteristics of aquaculture ecology 17
    2 Aquaculture ecosystems 22
    2.1 Classification of aquaculture systems 22
    2.1.1 Traditional classification of aquaculture systems 22
    2.1.2 Classification based on energy sources 23
    2.1.3 Classification based on metabolic features 25
    2.1.4 Classification based on ecological limiting factors 26
    2.2 Main physical environment of aquaculture organisms 30
    2.2.1 Physical properties of water 31
    2.2.2 Light in waters 31
    2.2.3 Temperature of waters 35
    2.2.4 Salt contents of waters 40
    2.3 Main chemical environment of aquaculture organisms 43
    2.3.1 Dissolved oxygen 43
    2.3.2 p H and its buffer system in water 49
    2.3.3 Ammonia and hydrogen sulfide 50
    2.4 Ecological differences among aquaculture waters 52
    2.4.1 Reservoir ecological continuum 52
    2.4.2 Ecological differences among inland waters 57
    2.4.3 Limiting nutrient elements and ecological succession in aquaculture waters 58
    2.5 Ecological pyramids in aquaculture system 61
    3 Biological community and food web structure of aquaculture pond systems 64
    3.1 Biological community of aquaculture pond system 64
    3.1.1 Concept of biological community 64
    3.1.2 Calculation method of biological community structure 65
    3.1.3 Effects of culture activities on biological community structure 66
    3.2 Food web structure of aquaculture pond system 71
    3.2.1 Concept of food web structure 71
    3.2.2 Analysis method of food web structure 72
    3.2.3 Research and application of food web structure in aquaculture system 73
    4 Productivity and carrying capacity of aquaculture waters 78
    4.1 Productivity and carrying capacity as well as their influence factors of aquaculture waters 78
    4.1.1 Productivity of aquaculture waters 79
    4.1.2 Carrying capacity of aquaculture waters 79
    4.1.3 Influence factors on productivity 80
    4.1.4 Influence factors on carrying capacity 83
    4.2 Productivity evaluation of aquaculture waters 83
    4.2.1 Productivity evaluation of aquaculture ponds 83
    4.2.2 Productivity evaluation of large aquaculture waters 87
    4.3 Carrying capacity evaluation of aquaculture waters 94
    4.3.1 Carrying capacity evaluation of kelp in bay 94
    4.3.2 Carrying capacity evaluation of scallop at open sea 95
    4.3.3 Carrying capacity evaluation of mitten crab in lake 97
    4.3.4 Carrying capacity evaluation of shrimp in mariculture pond 98
    4.3.5 Carrying capacity evaluation of large aquaculture waters 101
    5 Interactions between aquaculture and environment 104
    5.1 Water quality requirements for aquaculture 104
    5.2 Effects of exogenous pollutants on aquaculture 105
    5.2.1 Nutrients from agriculture and urban sewage 105
    5.2.2 Harmful algal blooms 106
    5.2.3 Oil pollution 107
    5.2.4 Heavy metals 107
    5.2.5 Pesticides and TBT 108
    5.3 Negative effects of aquaculture on environment 109
    5.3.1 Sedimentation and obstruction of water flows 109
    5.3.2 Eutrophication 110 5.3.3 Chemical residues 112
    5.3.4 Alien species invasion and escape of farming fish 115
    5.3.5 Mangrove destroy 117
    5.3.6 Contradiction between aquaculture and other uses 117
    5.4 Aquaculture and greenhouse gas emission 117
    5.4.1 Direct energy consumption and carbon emission in aquaculture 118
    5.4.2 Carbon output from aquaculture 120
    5.4.3 Carbon sequestration in aquaculture waters 120
    5.4.4 CO2 and CH4 fluxes at the water-air interface of aquaculture waters 123
    5.4.5 Carbon sinking fisheries 125
    6 Growth of aquaculture animals 128
    6.1 Growth patterns of aquatic animals 128
    6.1.1 Growth characteristics and individual size of aquatic animals 128
    6.1.2 Growth model of aquatic animals 130
    6.2 Effects of temperature on the growth of aquaculture animals 133
    6.2.1 Adaptability of aquatic animals to temperature 134
    6.2.2 Effects of temperature on the growth of aquaculture animals 135
    6.3 Effects of salt contents on the growth of aquaculture animals 139
    6.3.1 Adaptability of aquatic animals to salt contents 139
    6.3.2 Effects of salt contents on the growth of aquaculture animals 141
    6.4 Effects of light on the growth of aquaculture animals 143
    6.4.1 Adaptability of aquatic animals to light 143
    6.4.2 Effects of light on the growth of aquaculture animals 145
    6.5 Individual variation in weight of sea cucumber 149
    6.5.1 Effect of density and size on growth variation 149
    6.5.2 Growth variation of sea cucumber housed individually 152
    6.5.3 Effect of physical contact of the individual on growth variation 154
    6.6 Compensatory growth of aquatic animals after periodic starvation 156
    6.6.1 Compensatory growth phenomenon of aquatic animals 156
    6.6.2 Degree and characteristics of growth compensatory of aquatic animals 157
    6.6.3 Compensatory growth of aquatic animals after periodic starvation 158
    6.6.4 Factors affecting compensatory growth 159
    6.6.5 Physiological mechanism of compensatory growth 166
    6.6.6 Application practice of compensatory growth theory 166
    7 Effects of cyclical fluctuation of environmental factors on aquatic organisms 168
    7.1 Effects of circadian rhythms of temperature on growth of aquatic organisms 168
    7.1.1 Effects of circadian rhythms of temperature on macro-algae 169
    7.1.2 Effects of circadian rhythms of temperature on aquatic animals 170
    7.2 Effects of circadian rhythms of salinity on growth of aquatic organisms 178
    7.2.1 Effects of circadian rhythms of salinity on macro-algae 179
    7.2.2 Effects of circadian rhythms of salinity on aquatic animals 179
    7.3 Effects of periodical emersion on growth of macro-algae 182
    7.4 Effects of circadian rhythms of light on growth of aquatic organisms 184
    7.4.1 Effects of circadian rhythms of light on Ulva 184
    7.4.2 Effects of circadian rhythms of light on shrimp 187
    7.5 Effects of fluctuation of Ca2+ concentration in water on shrimp 189
    7.6 Effects of p H fluctuation of water on shrimp 191
    7.6.1 Effects of fluctuation range of water p H on growth and energy budget 191
    7.6.2 Effects of circadian rhythms of water p H on growth 192
    8 Biological control of water quality in aquaculture 194
    8.1 Biomanipulation of water ecosystems 194
    8.2 Production of phytoplankton and its limiting factors 197
    8.2.1 Photosynthesis of phytoplankton 197
    8.2.2 Main physical and chemical factors affecting the growth of phytoplankton 198
    8.3.3 Relationship between phytoplankton and fish yield in fertilization ponds 201
    8.4.4 Phytoplankton community in aquaculture ponds 202
    8.3 Nutrient uptake kinetics of macro-algae 204
    8.3.1 Nutrient requirement of macro-algae 204
    8.3.2 Response of macro-algae to iron stress 205
    8.3.3 Nitrogen uptake kinetics of macro-algae 207
    8.3.4 Phosphorous uptake kinetics of macro-algae 212
    8.4 Interaction between macro-algae and micro-algae 217
    8.4.1 Nutrient competition between macro-algae and micro-algae 217
    8.4.2 Allelopathic effects macro-algae on micro-algae 221
    8.5 Feeding of filter-feeding fish and bivalves 224
    8.5.1 Mathematical expression of filter-feeding fish and bivalves 224
    8.5.2 Feeding capacity of filter-feeding fish and bivalves 227
    8.5.3 Feeding rhythm and food selection of filter-feeding fish 233
    8.5.4 Relationship between respiration and feeding of silver carp 234
    8.6 Metabolism of bivalves and its effect on phytoplankton multiplication 237
    8.6.1 Respiration and excretion of bivalves 237
    8.6.2 Phytoplankton multiplication caused by bivalve excretion 239
    8.7 Effects of bivalves on water quality and sediment quality 240
    8.7.1 Effects of Crassostrea gigas on water chemical condition of shrimp farming pond 240
    8.7.2 Effects of Crassostrea gigas on sediment quality of shrimp farming pond 242
    8.7.3 Effects of Argopecten irradias on water quality of mariculture pond 243
    8.7.4 Effects of Ruditapes philippinarum on water quality of mariculture pond 244
    8.7.5 Comparison of effects of Argopecten irradias, Sinonovacula constricta and tilapia on plankton of mariculture pond 246
    8.8 Effects of filter-feeding fish on water quality 247
    8.8.1 Effects of fish stocking on water quality and plankton community 247
    8.8.2 Effects of fish stocking on planktonic bacteria 251
    8.8.3 Effects of fish stocking on nutrient distribution and material circulation 252
    9 Structure optimization of integrated aquaculture 254
    9.1 Definition and history of INTAQ in China 254
    9.1.1 Definition of INTAQ 254
    9.1.2 History of INTAQ in China 255
    9.2 Principles of INTAQ 257
    9.2.1 Waste reclamation 257
    9.2.2 Water quality maintenance through complementary mechanism 258
    9.2.3 Making full use of the resources in the waters 260
    9.2.4 Diseases prevention ecologically 262
    9.2.5 Dialectical way of thinking in INTAQ 262
    9.3 Classification of INTAQ systems 263
    9.3.1 Complementary chemical functions integration 264
    9.3.2 Species integration 265
    9.3.3 Systems integration 267
    9.4 Ecological rationales and methods for structure optimization of INTAQ 269
    9.4.1 Ecological rationales for structure optimization of INTAQ 269
    9.4.2 Methods for structure optimization of INTAQ 271
    9.5 Structure optimization of INTAQ in reservoir 273
    9.6 Structure optimization of INTAQ in ponds 275
    9.6.1 Structure optimization of integration of grass carp, silver carp and common carp 275
    9.6.2 Structure optimization of shrimp INTAQ ponds 278
    10 Principles of industrialized solar aquaculture systems (INSAS) 282
    10.1 Traditional models of industrialized fish culture systems 282
    10.2 Principles and model of INSAS 284
    10.2.1 Principles of INSAS 284
    10.2.2 Model of INSAS 287
    10.3 Aspects need to be improved in INSAS 293
    10.3.1 Illumination and temperature control technic in INSAS workshop 294
    10.3.2 Suitable culture species and proportion optimization 294
    10.3.3 Selection of polyculture pattern and design of polyculture device for different aquatic plants 294
    10.3.4 Study on the mechanism of INSAS 294
    10.3.5 Standardization of aquaculture management 294
    11 Ecological basis of aquaculture in low-lying saline alkaline land 296
    11.1 Pond water quality and biological environment of low-lying saline alkaline land 297
    11.1.1 Pond based system in low-lying saline alkaline land 297
    11.1.2 Water quality of pond in low-lying saline alkaline land 298
    11.1.3 Organisms of pond in low-lying saline alkaline land 299
    11.2 Tolerance of aquaculture animals to saline alkaline 300
    11.2.1 Effects of p H on freshwater culture species 300
    11.2.2 Tolerance of popular culture animals to salt contents 301
    11.2.3 Tolerance of popular culture animals to alkaline 302
    11.3 Effects of salt ions in water environment on shrimp growth 303
    11.3.1 Adaptability of shrimp to Na+/K+ in water 303
    11.3.2 Adaptability of shrimp to Ca2+ concentration in water 304
    11.3.3 Adaptability of shrimp to Mg2+/Ca2+ in water 305
    11.4 Pond water quality control in low lying saline alkali land 305
    11.4.1 Effects of filter feeding fish on water quality of saline alkaline ponds and its regulation 306
    11.4.2 Effects of applying KCl and Ca Cl2 on water quality of saline alkaline ponds 309
    11.4.3 Effects of Fertilization on water quality in saline alkaline ponds 311
    12 Principles of ecological prevention and control of white spot disease of shrimp 313
    12.1 Infection pathway of WSSV in shrimp 313
    12.1.1 Hosts of WSSV 314
    12.1.2 Several infection pathway of WSSV 314
    12.2 Relationship between the outbreak of white spot disease and the environment 316
    12.2.1 Relationship between WSSV pathogenicity and physical environment 316
    12.2.2 Relationship between WSSV pathogenicity and chemical environment 318
    12.2.3 Relationship between WSSV pathogenicity and biological environment 319
    12.3 Comprehensive prevention of white spot disease 320
    12.3.1 Preliminary treatment of pond water for shrimp farming 320
    12.3.2 Comprehensive measures for prevention of shrimp diseases 321
    13 Aquaculture systems from multi perspectives of view 326
    13.1 Emergy analysis of aquaculture systems 326
    13.1.1 Emergy analysis theory 328
    13.1.2 Basic steps and methods of emergy analysis 331
    13.1.3 Sustainability evaluation of three aquaculture systems of sea cucumber 333
    13.1.4 Emergy analysis of intensive aquaculture systems for turbot and grouper 337
    13.2 Life Cycle Assessment of aquaculture systems 340
    13.2.1 Introduction Life Cycle Assessment 341
    13.2.2 LCA of different aquaculture system of sea cucumber 343
    13.2.3 The role of LCA in the sustainability analysis of aquaculture systems 346
    13.3 Carbon footprint analysis of aquaculture system 348
    13.3.1 Introduction to the research methods of carbon footprint 348
    13.3.2 Carbon footprint analysis of three aquaculture system of sea cucumber 349
    References 352
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证