0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 矿业工程 > 矿物学环境属性(英文版)

相同作者的商品

相同语种的商品

浏览历史

矿物学环境属性(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
矿物学环境属性(英文版)
  • 书号:9787030732156
    作者:鲁安怀,李艳,王长秋,丁竑瑞
  • 外文书名:
  • 装帧:圆脊精装
    开本:大16
  • 页数:302
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2022-10-01
  • 所属分类:
  • 定价: ¥529.00元
    售价: ¥529.00元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书是国际上第一部专门论述矿物学环境属性的专著,系统总结了作者团队近20年来的研究成果(内容来源于国家973项目、国家自然科学基金项目),代表了国内矿物学环境属性的研究水平,部分成果在国际上处于领先地位。本书系统论述了矿物记录环境变化、矿物影响环境质量、矿物反映环境评价、矿物治理环境污染以及矿物参与生物作用五大矿物学环境属性。特别是在矿物治理污染的环境属性研究方面,提出无机界矿物天然自净化功能,包括矿物表面效应、孔道效应、结构效应、离子交换效应、氧化还原效应、溶解效应、结晶效应、水合效应、热效应、光催化效应、纳米效应以及矿物与生物复合效应等,拓展了环境矿物材料基本性能的研究,并通过实例深入探讨了这些净化功能在天然矿物中的具体表现,提出继物理法、化学法和生物法之后的环境污染防治第四类方法——矿物法。本书可以向世界展示我国环境矿物学研究的巨大发展,扩大我国矿物学研究的国际影响力。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    Contents
    1 Environmental Property of Minerals 1
    1.1 Research Category of Environmental Property of Minerals 1
    1.1.1 Minerals Record Environmental Changes 1
    1.1.2 Minerals Affect Environmental Quality 2
    1.1.3 Minerals Reflect Environmental Evaluation 3
    1.1.4 Minerals Control Environmental Pollution 4
    1.1.5 Minerals Participate in Biological Function 5
    1.2 Natural Self-purification Function of Inorganic Mineral 6
    1.2.1 Surface Effect of Mineral 7
    1.2.2 Channel Effect of Mineral 9
    1.2.3 Structure Effect of Mineral 11
    1.2.4 Ion Exchange Effect of Mineral 12
    1.2.5 Redox Effect of Mineral 13
    1.2.6 Precipitation/Dissolution Effect of Mineral 14
    1.2.7 Crystallization Effect of Mineral 14
    1.2.8 Hydration Effect of Mineral 15
    1.2.9 Thermal Effect of Mineral 16
    1.2.10 Photocatalytic Effect of Mineral 17
    1.2.11 Nano Effect of Mineral 17
    1.2.12 Composite Effect of Mineral and Organism 18
    1.3 Environmental Effects of the Synergism Between Minerals and Microorganisms 19
    1.3.1 Mineral Electron Energy Form 20
    1.3.2 Mineral Photoelectrons Promote the Origin and Evolution of Life 22
    1.3.3 Mineral Photoelectrons Promote the Growth and Metabolism of Photoelectrophic Microorganisms 23
    1.3.4 Microbial Photoelectrophic Nutrition Mode 25
    References 28
    2 Environmental Effects of Channel Structure Minerals 32
    2.1 Octahedral Channel Effects of Cryptomelane 32
    2.1.1 Channel Structure of Manganese Oxide 33
    2.1.2 Channel Effect of Natural Cryptomelane 33
    2.1.3 Remarks on the Reactivity of Nanomineral Aggregates 36
    2.2 Channel Structure Effects of Potassium Feldspar Tetrahedron 37
    2.2.1 Channel Structure Characteristics of Potassium Feldspar 37
    2.2.2 Ion Exchange Effect of Potassium Feldspar Channels 40
    2.3 Tubular-Texture Effects of the Chrysotile 48
    2.3.1 Crystal Structure of the Chrysotile 48
    2.3.2 The Active Group of Chrysotile 49
    2.3.3 The Activity of Chrysotile 51
    2.3.4 The Nanotube of Clinochrysotile 52
    2.3.5 Nano-fibriform Silica from Natural Chrysotile 53
    References 57
    3 Photoactivity of Mn Oxides on Earth’s Surface 61
    3.1 Nature Manganese Oxides 62
    3.1.1 Vast Distribution of Mn Oxides on Modern Earth 62
    3.1.2 Widespread Mn Coatings on Earth’s Surface 62
    3.1.3 Photoelectric Behavior of Mn (Oxyhydr)oxide 65
    3.2 Electronic Structure of Natural Semiconducting Mn Oxides 68
    3.2.1 Effect of Mn (or O) Vacancies.. 69
    3.2.2 Effect of Metal Cations 71
    3.3 Photocatalytic Self-reduction of Natural Mn Oxides 72
    3.3.1 Photocatalytic Oxidation of Water by M^CaOx 72
    3.3.2 Photocatalytic Self-reduction of Natural Mn Oxides 74
    3.4 Environmental Functions of Mn Oxides Controlled by Mn Redox Cycling 75
    3.4.1 Reductive Dissolution of Mn Oxides Mediated by Organic Matter 75
    3.4.2 Oxidative Formation of Mn Oxides and Heavy Metal Sorption 76
    3.5 Concluding Remarks 77
    References 77
    4 Redox Activity of Iron Sulfide and Mn Oxide 82
    4.1 Removal of Cr(VI) and Cr(III) from Aqueous Solution and Industrial Wastewater by Natural Pyrrhotite 82
    4.1.1 Characteristics of Pyrrhotite and Wastewater 83
    4.1.2 Effectiveness in Cr(VI) Removal 83
    4.1.3 Solid Phases After Cr(VI) Removal 85
    4.1.4 Process of Cr(VI) Removal 86
    4.1.5 Potential Industrial Application 87
    4.2 Reactivity of Mn Oxide Cryptomelane 88
    4.2.1 Occurrence and Characterization of Cryptomelane 88
    4.2.2 Oxidation of Phenols by Mn Oxide 91
    References 99
    5 Interaction Between Fe & Mn-Bearing Minerals and Microbes 101
    5.1 Reduction of Goethite by Cronobacter sakazakii 102
    5.1.1 Total Protein and Fe(II) Concentration Changes 102
    5.1.2 Morphology of the Strain and Minerals 103
    5.1.3 Coordination Structure and Fe Oxidation State of the Products 104
    5.2 Reduction of Birnessite by a Novel Dietzia Strain 106
    5.2.1 Anaerobic Reduction of Birnessite by 45-1b 107
    5.2.2 Aerobic Reduction of Birnessite by 45-1b 108
    5.2.3 Effect of AQDS on Reduction of Birnessite 109
    5.2.4 Mineral Characterization of Bioreduced Samples 110
    5.3 Coupled Anaerobic and Aerobic Microbial Processes for Mn-Carbonate Precipitation 114
    5.3.1 Birnessite Bioreduction by 45-1b Under Aerobic and Anaerobic Conditions 114
    5.3.2 Effect of Oxygen on Birnessite Bioreduction and Rhodochrosite Precipitation 120
    5.3.3 A Conceptual Model and Geologic Significances of Mn(II) Carbonate Precipitation at Anaerobic Sub-interfaces in the Aerobic Environment 125
    References 127
    6 Photocatalytic Reduction Effects of Sphalerite and Sulfur 131
    6.1 Mineralogical Characteristics of Natural Sphalerite 132
    6.1.1 Occurrence 132
    6.1.2 Crystal Chemical Characteristics 132
    6.1.3 Surface Charge 134
    6.2 Semiconducting Characteristics of Natural Sphalerite. 134
    6.2.1 Optical Absorption 134
    6.2.2 Electronic Structure 134
    6.2.3 Conduction and Valence Band Potentials 135
    6.3 Photocatalytic Activities of Natural Sphalerite 135
    6.3.1 Photoreduction of Pollutants as Well as Carbon Dioxide by Sphalerite 135
    6.3.2 Highly Efficient ZnO/ZnFe2〇4 Photocatalyst from Thermal Treatment of Sphalerite 138
    6.4 Photoreduction of Inorganic Carbon(+IV) by Elemental Sulfur 145
    6.4.1 Geochemistry of Tengchong Terrestrial Hot Spring with Abundant S0 146
    6.4.2 Photoreduction of Carbonate to Produce HCOOH in the Presence of S0 147
    6.4.3 The Photoactivity of S0 Under UV Light 148
    6.4.4 Adsorption of Carbonate Molecules and Formation of Formate on S0 151
    6.4.5 Reaction Mechanisms Based on the Semiconducting Properties of S0 151
    6.4.6 Reaction Mechanisms Based on Broken Bonds Reacting with Adsorbed Molecules... 152
    6.4.7 Implications for Photoreactive S0 in Prebiotic Terrestrial Hydrothermal Systems 154
    References 156
    7 Photocatalytic Oxidation Effects of Rutile 160
    7.1 Mineralogical Characteristics of Natural Rutile 160
    7.1.1 Occurrence 160
    7.1.2 Crystal Chemical Characteristics 160
    7.1.3 Surface Charge 163
    7.2 Semiconducting Characteristics of Natural Rutile 163
    7.2.1 Optical Absorption 163
    7.2.2 Electronic Structure 164
    7.2.3 Conduction and Valence Band Potentials 164
    7.3 Photocatalytic Activities of Natural Rutile 167
    7.3.1 Photocatalytic Oxidation of Methyl Orange by Natural Rutile Under Visible Light 167
    7.3.2 Enhanced Visible-Light Response of Natural Rutile by Thermal Treatment 169
    7.3.3 Explanations and Prospectivity of Rutile Photocatalysis on Both Earth and Mars 183
    References 185
    8 Interactions Between Semiconducting Minerals and Microbes 191
    8.1 Interactions Between Semiconducting Minerals and Bacteria Under Light 191
    8.1.1 Synergistic Pathway Between Semiconducting Minerals and Microorganisms 192
    8.1.2 Semiconducting Minerals Stimulate Growth of Non-phototrophicBacteria 192
    8.1.3 Synergism Between Microorganisms and Semiconducting Minerals in Environmental Remediation. 193
    8.2 Regulation and Influence of Mineral-Microorganism Electron Transfer on Microbial Community 194
    8.2.1 Semiconducting Minerals Regulate Extracellular Electron Transfer and Microbial Community Composition 194
    8.2.2 Photoelectron Energy of Semiconducting Minerals Affects Microbial Community and Function 204
    8.3 Regulation and Influence of Mineral-Microorganism Electron Transfer on Microbial Strains 209
    8.3.1 Extracellular Electron Transfer to Minerals Through External Circuit and Syneistically Enhanced by Semiconducting Minerals 209
    8.3.2 Extracellular Electron Transfer to Minerals Directly with Promotion from Semiconducting Minerals 213
    8.3.3 Photoelectron Energy Utilized by Microbes to Accelerate Metabolism 223
    8.4 Environmental Effects and Application of Pollutant Treatment 229
    8.4.1 Light Fuel Cell Tech for Pollution Treatment by Semiconducting Minerals Cooperating with Extracellular Electron Transform 229
    8.4.2 SSC Enhanced LFC System for Wastewater Treatment 239
    References 242
    9 Human Pathological Mineral Features 248
    9.1 Mineralization Characteristics of Psammoma Body Mineralization in Meningioma 248
    9.1.1 Morphology and Composition of Psammoma Body Mineralization in Meningioma 249
    9.1.2 Characterization of Morphology, Chemical Composition, and Microstructure of Separated PBs 251
    9.1.3 Discussion on the Formation Mechanism of Calcification 253
    9.2 Characteristics of Cardiovascular Mineralization 254
    9.2.1 Cardiovascular System Mineralization 254
    9.2.2 Mineralogical Characterization of Calcification in Cardiovascular Aortic Atherosclerotic Plaque 255
    9.3 Characteristics of Psammoma Bodies in Ovarian Tumors 259
    9.3.1 Morphology and Distribution of Psammoma Bodies in Ovarian Tumors 259
    9.3.2 The Mineral Composition and Fine Structure of Psammoma Bodies in Ovarian Tumors 260
    9.4 Carbonate and Cation Substitution in Hydroxyapatite in Breast Cancer Micro-calcifications 263
    9.4.1 Mineral Phase and Crystal Structure  263
    9.4.2 Carbonate Substitution 264
    9.4.3 Cation Substitution 267
    9.4.4 Diagnostic Significance and Implications 267
    References 268
    10 Infrared Effect of Minerals 270
    10.1 The Theory of Infrared Spectra 270
    10.2 Thermal Emission Spectra of Carbonate Minerals 271
    10.2.1 The Characteristics of the Natural Carbonate Minerals 272
    10.2.2 Infrared Absorption Spectroscopy 274
    10.2.3 Infrared Emission Spectroscopy 274
    10.2.4 The Effect of Crystal Chemistry on Characteristic Vibrations 277
    10.2.5 Infrared Radiation Properties of Minerals 278
    10.3 The Middle and Far-infrared Spectroscopy Characteristics of Calcite, Dolomite and Magnesite 281
    10.3.1 Mineral Characteristics and Infrared Absorption Spectroscopy 282
    10.3.2 Mid-infrared Thermal Emission Spectroscopy 283
    10.3.3 Mass of Metal Atoms Affects the Spectral Vibration Characteristics 284
    10.3.4 Effect of Antisymmetric Stretching Vibration of C-O Bond on the Emissivity of Carbonate Minerals 286
    10.3.5 Influence of Crystal Structure on the Radiation Characteristics of Minerals 287
    10.4 Thermal Emission Spectra of Silicate Minerals 288
    10.4.1 Infrared Spectroscopy  288
    10.4.2 Comparison of Absorption and Emission Bands of Silicate Minerals 295
    10.4.3 Effect of Vibrating SiO$ Tetrahedron on Infrared Radiation Properties 296
    10.4.4 Geologic Implications 298
    References 299
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证