0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 化学 > 高分子化学 > 新编高聚物的结构与性能(英文版)

相同语种的商品

浏览历史

新编高聚物的结构与性能(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
新编高聚物的结构与性能(英文版)
  • 书号:9787842658514
    作者:He Pingsheng
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:617
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥350.00元
    售价: ¥276.50元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Preface for English edition
    Chapter 1 Short-range Structure of Polymers 1
    1.1 Characteristics of structure of polymers and properties of polymers 1
    1.1.1 Talking about soft matter 1
    1.1.2 Features of polymer structure 1
    1.1.3 The concept of polymer properties 5
    1.2 Inter and intra-macromolecular interactions 7
    1.2.1 Chemical bond 7
    1.2.2 Polar interactions 10
    1.2.3 Van der Waals force and hydrogen bond 11
    1.2.4 Cohesion energy and cohesion energy density 13
    1.3 Short range structure of polymer chains 14
    1.3.1 Chemical component of structure units 15
    1.3.2 End groups 16
    1.3.3 Bonding mode of structural units 17
    1.3.4 Steric configuration of structural units 19
    1.3.5 Branching and crosslinking 21
    1.3.6 Bonding sequence of structural units 24
    1.4 Measurement of the short-range structures of polymer chains 28
    1.4.1 General chemical methods 28
    1.4.2 Pyrolysis gas chromatography 29
    1.4.3 Infrared spectroscopy 29
    1.4.4 X-ray diffraction 30
    1.4.5 Nuclear magnetic resonance 30
    1.4.6 Mass spectrometry 30
    Review questions 32
    Chapter 2 Long-range structure of polymer chain 34
    2.1 Internal rotation and flexibility of polymer chains 35
    2.1.1 Internal rotation in small molecules 35
    2.1.2 Flexibility of polymer chains 38
    2.2 Conformation Statistics of Polymer Chains 41
    2.2.1 The mean square end-to-end distance 41
    2.2.2 The mean square end-to-end distance of a real chain 50
    2.2.3 The factors affecting flexibility of polymer chains 53
    2.3 Rigid chain structure 57
    Review questions 59
    Chapter 3 Structure of condensed state of polymer chains 60
    3.1 Introduction 60
    3.1.1 Gas, liquid, solid, gaseous phase, liquid phase and solid phase 60
    3.1.2 Basic issues about condensed structure of polymer chains 61
    3.1.3 How do the polymer chains get together? 62
    3.1.4 The contents of condensed state of polymer chains 64
    3.1.5 The conformation of polymer chain in crystal 66
    3.1.6 Relationship between structures and properties of condensed state 69
    3.2 Structure models of condensed state of polymer chains 69
    3.2.1 Structure models of crystalline polymer 69
    3.2.2 Structural model of amorphous polymers 75
    3.2.3 Entanglement of polymer chains 77
    3.3 Crystalline morphology of polymers 79
    3.3.1 First polymerization and then crystallization 79
    3.3.2 Crystallization from solution or melt 80
    3.3.3 Solid-state crystalline polymerization and macroscopic crystal of polymer 84
    3.3.4 Single-chain single crystal 91
    3.3.5 Crystallization of ultra-thin film of polymers 97
    3.4 Crystallization Processes of Polymers 99
    3.4.1 Process of crystallization 99
    3.4.2 Crystallization kinetics and Avrami’s Equation 101
    3.4.3 Structural and environmental factors that affect the polymer crystallization 105
    3.4.4 Strobl model of polymer crystal growth 110
    3.5 Characterization of Polymer Crystallization 111
    3.5.1 Characterization of crystalline morphology of polymers 111
    3.5.2 Measurement of basic parameter of polymer crystal 112
    3.5.3 Methods for studying the crystallization processes of polymers 114
    3.5.4 Degree of crystallinity of polymers 115
    3.6 Polymer Liquid crystals 117
    3.6.1 Liquid crystals and their types 117
    3.6.2 Polymer liquid crystals 120
    3.6.3 Characterization of polymer liquid crystals 122
    3.6.4 Molecular structure of polymer liquid crystals 122
    3.6.5 Phase behavior of polymer liquid crystal 125
    3.6.6 Functional polymer liquid crystals 130
    3.6.7 Application of polymer liquid crystals 133
    3.6.8 The contribution of Chinese macromolecular scientists to the research of polymer liquid crystals 134
    3.7 The orientation state of polymers 137
    3.7.1 Basic concepts 138
    3.7.2 Stretching orientation of the crystalline polymer 142
    3.7.3 Orientation degree and their determining methods 144
    3.7.4 The factors affecting the orientation of polymers 147
    3.7.5 Contribution of Chinese scientist in orientation state—GOLR state 149
    Review questions 150
    Chapter 4 The molecular motion in polymers 153
    4.1 Characteristics of molecular motion in polymers 153
    4.1.1 Multiplicity of motion units 153
    4.1.2 Time dependence of molecular motion 155
    4.1.3 Temperature dependence of molecular motion in polymers 156
    4.2 Characteristic segment motion in polymers—glass transition 158
    4.2.1 Definition of glass transition 158
    4.2.2 Practical significance of glass transition 158
    4.2.3 Academic significance of glass transition 158
    4.2.4 Phenomenas of glass transition 158
    4.2.5 Theories of glass transition 161
    4.2.6 The structural factors affecting on glass temperature 167
    4.2.7 Methods to tailor glass temperature 172
    4.2.8 Some special cases of the glass transition of polymer 180
    4.3 Motion units smaller than the segments——The secondary transition of glass polymers 184
    4.3.1 Local relaxation 184
    4.3.2 Crank-shaft motion 184
    4.3.3 The motion of hetero-units in heterochain polymer 185
    4.3.4 The movement of the side groups or side chains 186
    4.3.5 Physical aging 187
    4.4 Molecular motion of crystalline polymers 188
    4.4.1 Melting of crystalline polymers 188
    4.4.2 Transition of crystalline morphology 189
    4.4.3 Movement of small side groups in the crystalline region 190
    4.4.4 Movement of the defects in crystalline region 191
    4.4.5 Interaction between crystalline and amorphous region 191
    4.4.6 Friction loss of granules in crystalline region 191
    4.5 Methods for studying molecular motion of polymers 191
    4.5.1 dilatometer method 192
    4.5.2 Differential scanning calorimetry 195
    4.5.3 Mechanical relaxation methods 196
    4.5.4 Dielectric relaxation 210
    4.5.5 Wide-line Nuclear Magnetic Resonance 211
    Review questions 217
    Chapter 5 Mechanical Properties of polymers 219
    5.1 Type of deformation, stress, strain and Hooke’s Law 219
    5.1.1 Simple Shear 219
    5.1.2 Bulk compression 220
    5.1.3 Simple tensile and simple compression 221
    5.1.4 Flexure 222
    5.1.5 Hooke’s law 222
    5.2 Rubber elasticity 223
    5.2.1 The features of rubber elasticity 223
    5.2.2 Thermodynamic analysis of rubber elasticity 224
    5.2.3 Statistical theory of rubber elasticity 227
    5.2.4 Contribution of internal energy to the energy function 233
    5.2.5 Experimental study of stress-strain relationship of rubber and its network 234
    5.2.6 The phenomenological theory of rubber in larger deformation 239
    5.3 Viscoelasticity of polymers 242
    5.3.1 Mechanical models of polymer viscoelasticity 243
    5.3.2 Maxwell model 244
    5.3.3 Voigt-Kelvin model 249
    5.3.4 The three–component mechanical model—Standard linear solid 253
    5.3.5 Generalized mechanical model 257
    5.3.6 Relaxation and retardation time spectrum 260
    5.4 Temperature dependence of mechanical behavior of polymers 263
    5.4.1 Deformation-temperature curve, modulus-temperature curve and temperature spectra of dynamic mechanical testing 264
    5.4.2 Time-temperature Equivalence and time-temperature superposition principle 268
    5.4.3 The master curve 270
    5.4.4 WLF equation 272
    5.5 Plasticity and yield behavior of polymers 275
    5.5.1 Stress-strain curve, true stress and true strain 275
    5.5.2 Features of yield behavior of polymer 279
    5.5.3 The molecular interpretation of the yield 282
    5.5.4 The post-yield phenomena 285
    5.6 Breaking and fracture of polymers 290
    5.6.1 Brittle and ductile fracture of polymers 291
    5.6.2 The theoretical strength of polymers 296
    5.6.3 Stress concentration 298
    5.6.4 Griffith theory 301
    5.6.5 Zhurkov theory 302
    5.6.6 A generalized theory of fracture mechanics 305
    5.6.7 Craze of glassy polymers 307
    5.6.8 Impact strength of polymers 309
    Review questions 316
    Chapter 6 Rheological properties of polymer 320
    6.1 Molding methods and properties of polymer melts 320
    6.2 Non-Newtonian behavior of polymer melts 321
    6.2.1 Non-Newtonian behavior of polymer melts 322
    6.2.2 Non-Newtonian fluids 322
    6.2.3 The flow of polymer melts 324
    6.3 Measurements of shear viscosity and influencing factors 327
    6.3.1 Test methods of shear viscosity 327
    6.3.2 Factors affecting the shear viscosity of polymer melts 330
    6.4 Tensile viscosity of polymer melts 341
    6.4.1 Tensile viscosity 341
    6.4.2 Types of tensile viscosity of polymer melts 342
    6.4.3 Technical significance of tensile viscosity 343
    6.4.4 The experimental measurement of tensile viscosity 344
    6.5 Elasticity of polymer melts 345
    6.5.1 The shear modulus of elasticity 346
    6.5.2 Tensile elasticity 348
    6.5.3 Normal stress 349
    6.5.4 Rod climbing 351
    6.5.5 The tubeless siphon effect 351
    6.5.6 End pressure drop 351
    6.5.7 Extrusion die swell 352
    6.5.8 Unsteady flow and melt fracture 354
    6.6 Typical flow analysis in processing 357
    6.6.1 Extrusion 357
    6.6.2 Extrusion blow moulding 361
    6.7 The electromagnetic dynamic plasticating extrusion of polymers 362
    6.8 The relationship between article and mechanical properties of polymers 365
    Review questions 372
    Chapter 7 Electrical Properties of Polymers 374
    7.1 Characteristics of electrical properties of polymers 374
    7.2 Dielectric properties of polymers 375
    7.2.1 The general concept of dielectric properties 375
    7.2.2 Dielectric constant and dielectric loss 378
    7.2.3 The analogy of electrical model and the mechanical model 380
    7.3 Dielectric relaxations of polymer 382
    7.3.1 Dipole moment of the polymer chain 382
    7.3.2 Dielectric constant and dielectric loss of polymer 385
    7.3.3 Influence factors of polymer dielectric properties 386
    7.3.4 Dielectric relaxation and dielectric relaxation spectroscopy of polymers 389
    7.4 Conductivity of Polymers 392
    7.4.1 Basic concepts of conducting polymers 393
    7.4.2 Peierls Instability 394
    7.4.3 Polyacetylene 396
    7.4.4 Unique "soliton" state of the one-dimensional conductor 397
    7.4.5 Degeneracy of the ground state in polyacetylene 398
    7.4.6 The soliton and polaron in trans-polyacetylene 399
    7.4.7 The electronic state in the domain wall 402
    7.4.8 Doping 405
    7.4.9 Polymer conductor with non-degenerate ground state 407
    7.4.10 Two-dimensional system of conducting polymers 410
    7.4.11 Other Conducting Polymers 411
    7.5 Conjugated polymer electroluminescence 414
    7.6 Superconductivity of polymer 419
    7.6.1 Conductive path of free electrons in Superconductor 419
    7.6.2 The basic concept of superconducting state and BCS superconducting theory 420
    7.6.3 Little’s Model of Superconducting Polymer 424
    7.7 The Conductivity of single-chain polymer 425
    7.8 Other Electrical Properties of Polymer 429
    7.8.1 Polymer Piezoelectric Polarization and Thermal-electric Polarization 429
    7.8.2 Polymer Electrets and Pyroelectricity 434
    7.8.3 Electrical Breakdown of Polymer 438
    7.8.4 Electrostatic phenomena in polymer 441
    Review questions 445
    Chapter 8 Thermal, optical and magnetic properties of polymers 447
    8.1 Thermal stability of polymers and high temperature resistant polymer materials 447
    8.1.1 Relationship of polymer structure and thermal resistance—Mark triangle 448
    8.1.2 Thermal decomposition of polymers 455
    8.2 Thermal expansion of polymers 463
    8.2.1 Qualitative illustration of thermal expansion 463
    8.2.2 Negative thermal expansion coefficient of p-toluene sulfonate (PTS) 466
    8.2.3 Effect of orientation on thermal expansion of amorphous polymers 469
    8.2.4 Thermal expansion of crystalline polymer 471
    8.3 Thermal conductivity of polymers 474
    8.3.1 Thermal conductivity of solid polymers 474
    8.3.2 Thermal conductivity of polymer melt and polymer solution 477
    8.4 Flame retardant polymers 481
    8.5 General optical properties of polymers 484
    8.5.1 Refraction 485
    8.5.2 Transmittance 488
    8.5.3 Reflection 489
    8.6 Optical plastic 490
    8.6.1 Common optical plastics 490
    8.6.2 Novel optical plastics 493
    8.7 Polymer optical fiber (plastic optical fiber) (POF) 494
    8.8 Polymer microlens array 498
    8.9 Magnetic properties of polymers 499
    8.9.1 General concepts of magnetic properties of organic compounds 500
    8.9.2 Structural organic polymer magnets 501
    Review questions 506
    Chapter 9 The solution properties of polymers 508
    9.1 The characteristics of polymer solutions 508
    9.2 Polymer dissolving and solvent selection 510
    9.2.1 Factors that affect the dissolving polymers 510
    9.2.2 Thermodynamic of the polymer dissolving 511
    9.2.3 Determine the intersolubility and solvent selection 513
    9.2.4 Purpose of dissolving and usage of solution 518
    9.3 Thermodynamic properties of solution of polymer with flexible chain 518
    9.3.1 Ideal solution 518
    9.3.2 Statistical theory of polymer solution—Flory-Huggins quasi-lattice model theory 519
    9.3.3 Dilute solution theory 529
    9.4 Phase equilibrium of polymer solution 533
    9.4.1 Osmotic pressure 533
    9.4.2 Q-solution 536
    9.4.3 Phase separation 539
    9.4.4 The swelling of the crosslinked rubber 540
    9.5 Thermodynamics of compatibility of Blends 545
    9.5.1 Blend 545
    9.5.2 Thermodynamics of blends miscibility 546
    9.5.3 Compatibilizer 551
    9.6 Concentrated solution of polymer 552
    9.6.1 Plasticized polymer 552
    9.6.2 Spinning Solution 554
    9.6.3 Jelly and Gel 554
    9.7 Polyelectrolyte Solution 555
    9.7.1 Polyelectrolyte Solution 555
    9.7.2 Characteristics of polymer electrolyte solution 556
    9.7.3 Volume phase transition of strong polyelectrolyte gels in organic solvent 557
    9.8 Scale concept of polymer solution 558
    Review questions 563
    Chapter 10 Relative molecular weight and molecular weight distribution of polymers 565
    10.1 The statistical significance of relative molecular weight 565
    10.1.1 Different types of average relative molecular weights 565
    10.1.2 The relationships between various average relative molecular weights 567
    10.2 The breadth parameter of the relative molecular weight distribution 569
    10.3 The methods for relative molecular weight measurement 571
    10.3.1 General discussion on the methods for relative molecular weight measurement 571
    10.3.2 Membrane osmotic pressure method 573
    10.3.3 Light scattering method 575
    10.3.4 Viscometry 579
    10.3.5 Flory intrinsic viscosity theory 584
    10.3.6 The viscosity measurement of extremely diluted solution 587
    10.3.7 Automatic viscometer 588
    10.3.8 Mass Spectrometry (MS) 589
    10.4 The relative molecular weight distribution of polymers 593
    10.4.1 The expression of relative molecular weight distribution 594
    10.4.2 The measurement of relative molecular weight distribution 596
    10.4.3 Data processing of fractionation 598
    10.4.4 Size exclusion chromatography 600
    Review questions 612
    References 614
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证