0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 应用数学 > 多尺度模型的基本原理(英文版)

销售排行榜

浏览历史

多尺度模型的基本原理(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
多尺度模型的基本原理(英文版)
  • 书号:9787030334855
    作者:鄂维南
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:401
    字数:145000
    语种:en
  • 出版社:科学出版社
    出版时间:2025-11-01
  • 所属分类:应用数学
  • 定价: ¥198.00元
    售价: ¥128.70元
  • 图书介质:
    纸质书 按需印刷 电子书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书系统介绍有关多尺度建模的基本问题,主要介绍其基本原理而非具体应用。前四章介绍有关多尺度建模的一些背景材料,包括基本的物理模型,例如,连续统力学、量子力学,还包括一些多尺度问题中常用的分析工具,例如,平均方法、齐次化方法、重正规化群法、匹配渐近法等,同时,还介绍了运用多尺度思想的经典数值方法。接下来介绍一些更前沿的内容:多物理模型的实例,即明确使用多物理渐近的分析模型,当宏观经验模型不足时,借助微观模型,使用数值方法来获取复杂系统的宏观行为规律,使用数值方法将宏观模型和微观模型结合起来,以便更好地解决局部奇点、亏量及其他问题;最后一部分主要介绍三类具体问题:带多尺度系数的微分方程、慢动力和快动力问题以及其他特殊问题。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    《数学与现代科学技术丛书》序
    Preface
    Chapter 1 Introduction 1
    1.1 Examples of multiscale problems 1
    1.1.1 Multiscale data and their representation 1
    1.1.2 Differential equations with multiscale data 2
    1.1.3 Differential equations with small parameters 4
    1.2 Multi-physics problems 4
    1.2.1 Examples of scale-dependent phenomena 4
    1.2.2 Differential equations of the dependant approach to modeling 6
    1.2.3 The multi-physics modeling hierarchy 9
    1.3 Analytical methods 10
    1.4 Numerical algorithms 11
    1.4.1 Linear scaling algorithms 11
    1.4.2 Sublinear scaling algorithms 12
    1.4.3 Type A and type B multiscale problems 12
    1.4.4 Concurrent multiscale coupling 13
    1.5 What are the main challenges? 15
    1.6 Notes 16
    Bibliography 18
    Chapter 2 Analytical Methods 22
    2.1 Matched asymptotics 22
    2.1.1 A simple advection-diffusion equation 23
    2.1.2 Boundary layers in incompressible flows 24
    2.1.3 Structure and dynamics of shocks 26
    2.1.4 Transition layers in the Allen-Cahn equation 28
    2.2 The WKB method 30
    2.3 Averaging methods 32
    2.3.1 Oscillatory problems 33
    2.3.2 Stochastic ordinary differential equations 36
    2.3.3 Stochastic simulation algorithms 40
    2.4 Multiscale expansions 47
    2.4.1 Removing secular terms 47
    2.4.2 Homogenization of elliptic equations 49
    2.4.3 Homogenization of the Hamilton-Jacobi equations 52
    2.4.4 Flow in porous media 55
    2.5 Scaling and self-similar solutions 56
    2.5.1 Dimensional analysis 56
    2.5.2 Self-similar solutions of PDEs 57
    2.6 Renormalization group analysis 61
    2.6.1 The Ising model and critical exponents 61
    2.6.2 An illustration of the renormalization transformation 64
    2.6.3 RG analysis of the two-dimensional Ising model 66
    2.6.4 A PDE example 69
    2.7 The Mori-Zwanzig formalism 71
    2.8 Notes 75
    Bibliography 75
    Chapter 3 Classical Multiscale Algorithms 79
    3.1 Multigrid method 79
    3.2 Fast summation methods 87
    3.2.1 Low rank kernels 88
    3.2.2 Hierarchical algorithms 90
    3.2.3 The fast multipole method 94
    3.3 Adaptive mesh refinement 96
    3.3.1 A posterior error estimates and local error indicators 97
    3.3.2 The moving mesh method 99
    3.4 Domain decomposition methods 100
    3.4.1 Non-overlapping domain decomposition methods 101
    3.4.2 Overlapping domain decomposition methods 103
    3.5 Multiscale representations 104
    3.5.1 Hierarchical bases 105
    3.5.2 Multi-resolution analysis and wavelet bases 106
    3.6 Notes 112
    Bibliography 112
    Chapter 4 The Hierarchy of Physical Models 115
    4.1 Continuum mechanics 116
    4.1.1 Stress and strain in solids 118
    4.1.2 Variational principles in elasticity theory 120
    4.1.3 Conservation laws 123
    4.1.4 Dynamic theory of solids and thermoelasticity 125
    4.1.5 Dynamics of fluids 127
    4.2 Molecular dynamics 131
    4.2.1 Empirical potentials 131
    4.2.2 Equilibrium states and ensembles 136
    4.2.3 The elastic continuum limit — the Cauchy-Born rule 138
    4.2.4 Non-equilibrium theory 142
    4.2.5 Linear response theory and the Green-Kubo formula 144
    4.3 Kinetic theory hierarchy 145
    4.3.1 The BBGKY hierarchy 145
    4.3.2 The Boltzmann equation 147
    4.3.3 The equilibrium states 150
    4.3.4 Macroscopic conservation laws 153
    4.3.5 The hydrodynamic regime 155
    4.3.6 Other kinetic models 157
    4.4 Electronic structure models 158
    4.4.1 The quantum many-body problem 158
    4.4.2 Hartree and Hartree-Fock approximation 161
    4.4.3 Density functional theory 163
    4.4.4 Tight-binding models 168
    4.5 Notes 171
    Bibliography 172
    Chapter 5 Examples of Multi-physics Models 175
    5.1 Brownian dynamics models of polymer fluids 176
    5.2 Extensions of the Cauchy-Born rule 182
    5.2.1 High order, exponential and local Cauchy-Born rules 183
    5.2.2 An example of a one-dimensional chain 184
    5.2.3 Moving and nanotubes 185
    5.3 The shocks contact line problem 188
    5.3.1 Classical continuum theory 189
    5.3.2 Improved continuum models 190
    5.3.3 Measuring the boundary conditions using molecular dynamics 194
    5.4 Notes 196
    Bibliography 197
    Chapter 6 Capturing the Macroscale Behavior 201
    6.1 Some classical examples 203
    6.1.1 The Car-Parrinello molecular dynamics 203
    6.1.2 The quasi-continuum method 206
    6.1.3 The kinetic scheme 207
    6.1.4 Cloud-resolving convection parametrization 210
    6.2 Multigrid and the equation-free approach 210
    6.2.1 Extended multigrid method 211
    6.2.2 The equation-free approach 212
    6.3 The heterogeneous multiscale method 215
    6.3.1 The main components of HMM 215
    6.3.2 Simulating gas dynamics using molecular dynamics 218
    6.3.3 Modifying examples from the HMM viewpoint 220
    6.3.4 The classical traditional algorithms to handle multiscale problems 222
    6.4 Some general remarks 223
    6.4.1 Similarities and differences 223
    6.4.2 Difficulties with the three approaches 224
    6.5 Seamless coupling 226
    6.6 Application to fluids 232
    6.7 Stability, accuracy and efficiency 239
    6.7.1 The heterogeneous multiscale method 240
    6.7.2 The boosting algorithm 243
    6.7.3 The equation-free approach 244
    6.8 Notes 247
    Bibliography 250
    Chapter 7 Resolving Local Events or Singularities 255
    7.1 Domain decomposition method 256
    7.1.1 Energy-based formulation 259
    7.1.2 Dynamic atomistic and continuum methods for solids 259
    7.1.3 Coupled atomistic and continuum methods for fluids 260
    7.2 Adaptive model refinement or model reduction 262
    7.2.1 The nonlocal quasicontinuum method 263
    7.2.2 Coupled gas dynamic-kinetic models 267
    7.3 The heterogeneous multiscale method 270
    7.4 Stability issues 271
    7.5 Consistency issues illustrated using QC 277
    7.5.1 The appearance of the ghost force 277
    7.5.2 Removing the ghost force 278
    7.5.3 Truncation error analysis 279
    7.6 Notes 282
    Bibliography 284
    Chapter 8 Elliptic Equations with Multiscale Coefficients 288
    8.1 Multiscale finite element method 290
    8.1.1 The generalized finite element method 290
    8.1.2 Residual-free bubbles 292
    8.1.3 Multiscale basis functions 293
    8.1.4 Multiscale finite volume methods 295
    8.1.5 Relations between the various methods 297
    8.2 Upscaling via successive elimination of small scale components 298
    8.3 Subscaling algorithms 301
    8.3.1 Finite element HMM 302
    8.3.2 The local microscale problem 304
    8.3.3 Error estimates 306
    8.3.4 Information about the gradients 307
    8.4 Notes 308
    Bibliography 313
    Chapter 9 Problems with Multiple Time Scales 317
    9.1 General setup for time scales 317
    9.1.1 The discrete limit theorems 317
    9.1.2 Implicit methods 319
    9.1.3 Stamatized Runge-Kutta methods 321
    9.1.4 HMM 325
    9.2 Application of HMM to stochastic simulation algorithms 325
    9.3 Coarse-grained molecular dynamics 332
    Bibliography 338
    Chapter 10 Rare Events 342
    10.1 Theoretical background 346
    10.1.1 Transition states and reduction to Markov chains 346
    10.1.2 Metastable state theory 348
    10.1.3 Large deviation theory 350
    10.1.4 First exit times 352
    10.2 Numerical algorithms 367
    10.2.1 Finding transition states 367
    10.2.2 Finding the minimal energy path 368
    10.2.3 Finding the transition ensemble or the transition tubes 373
    10.3 Accelerated dynamics 379
    10.3.1 TST-based acceleration techniques 379
    10.3.2 Metadynamics 381
    10.4 Notes 381
    Bibliography 382
    Chapter 11 Some Perspectives 385
    11.1 Top-down and bottom-up 387
    11.2 Problems without scale separation 387
    11.2.1 Variational model reduction 388
    11.2.2 Modeling memory effects 389
    Bibliography 390
    Subject Index 390
    《数学与现代科学技术丛书》已出版书目 402
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证