第3卷的编者 总目录 引言 第3卷 膜系统中的化学和生物化学转化 膜反应器基础 3.01 膜反应器基础 3.01.1 Introduction 3.01.2 Conversion Enhancement in Extractor-Type Membrane Reactors Operating Thermodynamically under Equilibrium-Controlled Reaction Conditions 3.01.2.1 Boosting of Alkane Dehydrogenation by Hydrogen Removal 3.01.2.2 Increasing the Esterification Yield by Water Removal 3.01.2.3 Water removal in Knoevenagel condensations in micro reactors 3.01.2.4 Hydrogen Production by Water Splitting Using Oxygen-Selective Perovskite Membranes 3.01.3 Selectivity Enhancement in Distributor/Contactor-Type Membrane Reactors Operating under Reaction Kinetics Conditions 3.01.3.1 Partial Oxidation of Hydrocarbons by Nonselective Supply of Oxygen through a Porous Membrane as Reactor Wall 3.01.3.2 POM to Synthesis Gas in a Perovskite Hollow-Fiber Membrane Reactor 3.01.3.3 Hydrocarbon Partial Oxidation with Selective Oxygen Supply 3.01.3.4 p-Xylene Oxidation to Terephthalic Acid in a Reactor with a Bifunctional Membrane 3.01.3.5 Partial Hydrogenation of Cyclooctadiene to Cyclooctene in a Pore-through-Flow Membrane Reactor 3.01.4 Removal of Oxygen as a Reaction Rate Inhibitor in the NOx Decomposition in an Extractor-Type Membrane Reactor 3.01.5 Conclusions 3.01.6 Acknowledgments References 3.02 计算机辅助模型设计和膜反应-分离耦合体系分析 3.02.1 Introduction 3.02.2 Simultaneous Design of Membrane Process 3.02.2.1 Design Problem Definition 3.02.2.2 Simultaneous Design Framework 3.02.2.2.1 Need for a systematic model-based design framework 3.02.2.2.2 Multilevel modeling 3.02.2.2.3 Solution approaches 3.02.3 Synthesis Design of Hybrid Processes 3.02.3.1 Problem Definition 3.02.3.2 Model-Based Framework 3.02.3.2.1 Hybrid process design and analysis(stage 1) 3.02.3.2.2 Implementation(stage 2) 3.02.3.2.3 Validation(stage 3) 3.02.3.3 Generic Model for a Hybrid Process 3.02.4 Computer-Aided Methods and Tools 3.02.4.1 Model Library 3.02.5 Case Studies 3.02.5.1 Simultaneous Design of Membrane and Separation Process-A Conceptual Study 3.02.5.1.1 Design problem definition 3.02.5.1.2 Model equations and characterizing variables 3.02.5.1.3 Solution approaches 3.02.5.2 R-S Hybrid Process-Propionic Acid Case Study 3.02.5.2.1 Stage 1:Hybrid process design and analysis 3.02.5.2.2 Implementation(stage 2) 3.02.5.2.3 Validation(stage 3) 3.02.6 Conclusions References 3.03 催化膜反应器模型与模拟 3.03.1 Introduction 3.03.2 Mathematical Modeling of Catalytic MRs 3.03.2.1 Tubular MR 3.03.2.2 Catalytic Membranes 3.03.2.3 A Two-Separate-Phase Enzyme-Loaded MR 3.03.2.4 Pore-through Flow Mode Enzyme-Loaded MR 3.03.2.5 Energy Balance 3.03.3 Simulations 3.03.3.1 Tubular Pd-Based MRs 3.03.3.2 A Two-separate-Phase Enzyme-Loaded MR 3.03.3.3 Pore-through Flow Mode:An Enzyme-Loaded MR 3.03.4 Potentiality and Perspectives of MRs References 3.04 多相膜反应器 3.04.1 Introduction 3.04.1.1 Some General Considerations on Membrane Reactors 3.04.1.2 Materials for Membrane Reactors 3.04.1.3 Catalytic Membrane Preparation 3.04.2 Overview of Multiphase Membrane Reactors 3.04.2.1 The Reaction Takes Place in One of the Two Fluid Phases 3.04.2.1.1 The reaction takes place outside the membrane 3.04.2.1.2 The reaction takes place inside the membrane 3.04.2.1.3 The reaction takes place inside the membrane structure 3.04.2.2 The Reaction Takes Place on a Catalyst 3.04.2.2.1 The catalysts are placed in the membrane lumen 3.04.2.2.2 The catalysts are placed on the membrane surface 3.04.2.2.3 The catalysts are dispersed on the membrane structure 3.04.3 The Mathematical Modeling of Multiphase Membrane Reactors 3.04.3.1 Membrane Contactors 3.04.3.1.1 Membrane contactors working in wetted mode with negligible homogeneous reaction 3.04.3.1.2 Membrane contactor reaction working in nonwetted mode with negligible homogeneous reaction 3.04.3.2 Evaluation of Local Mass Transfer Coefficients in the Boundary Layers Located on Both Sides of the Membrane Surface 3.04.3.2.1 Membrane contactors in the presence of a homogeneous reaction in the liquid phase 3.04.3.3 Catalytic Three-Phase Membrane Reactors 3.04.3.3.1 Internal diffusion in a TPCMR 3.04.3.3.2 Influence of external mass transfer 3.04.3.4 Some Considerations on the Mass Balance in Membrane Contactors and Three-Phase Membrane Reactors 3.04.4 Conclusions References 催化膜和膜反应器 3.05 催化膜和膜反应器 3.05.1 Introduction 110 3.05.2 Classification of MRs 3.05.3 Membrane Functions in a MR 3.05.4 Organic MRs 3.05.5 Immobilization of Catalysts in Membranes 3.05.6 Industrial Applications of MRs and the As-Yet Existing Limitations References 3.06 渗透汽化膜反应器 3.06.1 Introduction 3.06.2 Definition of a Pervaporation Membrane Reactor 3.06.3 Conventional Approach Using Reactive Distillation 3.06.4 R1-Type Pervaporation Membrane Reactors 3.06.5 R2-Type Pervaporation Membrane Reactors:Esterification Reactions 3.06.5.1 Pervaporation-Aided Esterification 3.06.5.2 Esterification of Acetic Acid and Ethanol 3.06.5.3 Esterification of Acetic Acid with Other Alcohols 3.06.5.4 Esterification Reactions with Other Acids 3.06.6 R2-Type Pervaporation Membrane Reactors:Reactions Other than Esterification Reactions 3.06.7 Conclusions References 3.07 膜反应器中的光催化过程 3.07.1 Introduction 3.07.2 Photocatalysis as a Green Process 3.07.2.1 Basics of Heterogeneous Photocatalysis 3.07.2.1.1 Mechanism 3.07.2.1.2 Photocatalytic reaction parameters 3.07.3 Photocatalytic Activity of Semiconductor Materials 3.07.3.1 Photocatalysts 3.07.3.2 Titanium Dioxide 3.07.3.3 New Generation of Photocatalysts 3.07.4 Applications of the Photocatalytic Technologies 3.07.4.1 Purification Processes 3.07.4.1.1 Total oxidation of environmental pollutants 3.07.4.1.2 Removal of toxic metal ions 3.07.4.1.3 Conversion of inorganic contaminants 3.07.4.1.4 Antimicrobial and antitumor activity 3.07.4.2 Synthetic Pathways 3.07.4.2.1 Selective oxidations and reductions 3.07.4.2.2 Functionalization 3.07.4.2.3 Hydrogen evolution 3.07.4.3 Photocatalysis Coupled with Other Technologies 3.07.5 Potentials and Limits of the Photocatalytic Processes 3.07.6 PMRs with Suspended Catalyst 3.07.6.1 Introduction 3.07.6.2 Variables Influencing the Performance of PMRs 3.07.6.3 Types of PMRs 3.07.6.3.1 Pressurized membrane photoreactors 3.07.6.3.2 Submerged(depressurized)membrane photoreactors 3.07.6.3.3 Photocatalytic membrane contactors 3.07.6.4 Future Perspectives:Solar Energy 3.07.7 Outline on Kinetic Models in Heterogeneous Photocatalytic Reactions and Modeling of Membrane Photoreactors 3.07.7.1 Introduction 3.07.7.2 Adsorption Kinetics 3.07.7.3 Photocatalytic Kinetics 3.07.7.4 Quantum Yield and Relative Photonic Efficiency 3.07.7.5 Modeling of PMR 3.07.8 Case Study:Partial and Total Oxidation Reactions in PMRS 3.07.8.1 One-Step Synthesis and Separation of Phenol in a PMC 3.07.8.2 Photodegradation of Pharmaceutical in PPMR and SPMR 3.07.9 Conclusions References 3.08 生物催化膜和膜生物反应器 3.08.1 Introduction 3.08.2 Membrane Bioreactors 3.08.2.1 Membrane Bioreactors with Biocatalyst Recycled in the Retentate Stream 3.08.2.2 Membrane Bioreactors with Biocatalyst Confined in the Membrane Module Space 3.08.3 Biocatalytic Membrane Reactors 3.08.3.1 Biocatalytic Membrane Reactors Using Entrapped Enzyme within the Membrane Thickness 3.08.3.2 Biocatalytic Membrane Reactors Using Enzymes Gelified on the Membrane Surface 3.08.3.3 Biocatalytic Membrane Reactors Using Enzyme Chemically Bound to the Membrane 3.08.3.3.1 Enzyme adhesion to the membrane by weak bonds 3.08.3.3.2 Enzyme adhesion to the membrane by strong bond 3.08.3.4 Biocatalytic Membrane Reactors Using Enzyme Immobilized by Site-Specific Method 3.08.3.5 Kinetics of Biocatalytic Membrane Reactor where Transport Occurs by Diffusion 3.08.3.5.1 Enzyme immobilized on the surface 3.08.3.5.2 Enzyme immobilized into the porous matrix 3.08.4 Biocatalytic Membranes and Membrane Bioreactor Applications 3.08.4.1 Biocatalytic Membranes and Membrane Bioreactors in Pharmaceutical Applications 3.08.4.2 Biocatalytic Membranes and Membrane Bioreactors in Food Applications 3.08.4.3 Submerged Membrane Bioreactors in Water Treatment and Other Emerging Applications 3.08.5 Conclusions References 生物化学转化和再生医学 3.09 用于组织工程和干细胞移植的中空纤维膜反应器 3.09.1 Introduction 3.09.2 HFMB for 3D Tissue Engineering 3.09.3 Artificial Functional Organs 3.09.3.1 Bioartificial Liver 3.09.3.2 Bioartificial Kidney 3.09.3.3 Bioartificial Pancreas 3.09.4 HFMB for Stem Cell Culture 3.09.5 Development of Biodegradable Hollow Fiber Membrane 3.09.6 Mathematical Modeling 3.09.7 Future Opportunities References 3.10 用于肝脏和神经组织工程的膜技术 3.10.1 Introduction 3.10.2 Membranes for Liver Tissue Regeneration 3.10.2.1 Cell Source 3.10.2.2 Culture System 3.10.2.3 Bioreactor 3.10.2.4 Membrane BAL Systems in Clinical Evaluation 3.10.2.5 Membrane BAL system in Preclinical and In Vitro Evaluation 3.10.2.6 Novel Membrane Biohybrid System for Liver Regeneration 3.10.3 Membranes for Neuronal Tissue Regeneration 3.10.3.1 Clinical Approaches for Treating Nerve Injuries 3.10.3.2 Bioengineering Strategies for Nerve Repair 3.10.3.2.1 Guidance therapies 3.10.3.2.2 Tissue response to bridging devices 3.10.3.3 Membranes Used in In Vivo Neuronal Regeneration 3.10.4 Conclusions References 3.11 基于多孔聚合物膜的干细胞和血液细胞的分离和纯化 3.11.1 Introduction 3.11.2 Blood-Cell Separation 3.11.2.1 Leukocyte-Removal Filter 3.11.2.2 LCAP Using Leukocyte-Removal Filter 3.11.2.3 Therapeutic Mechanism of LCAP through the Filters 3.11.3 Stem-Cell Separation 3.11.3.1 HSCs and Blood 3.11.3.1.1 Separation of HSCs and blood cells by membranes 3.11.3.1.2 Separation of HSCs by several surface-modified membranes 3.11.3.2 Separation of MSCs/Mesenchymal Progenitor Cells 3.11.3.2.1 Flow-cytometric analysis of mesenchymal cells 3.11.3.2.2 Cell separation through PU membranes 3.11.3.2.3 Cell separation through various porous membranes 3.11.4 Concluding Remarks References 第3卷的索引