0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 航空/航天 > 复合材料层合结构分析:理论及应用= Analysisof Composite Laminates:Theories and Their Applications:英文

相同语种的商品

浏览历史

复合材料层合结构分析:理论及应用= Analysisof Composite Laminates:Theories and Their Applications:英文


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
复合材料层合结构分析:理论及应用= Analysisof Composite Laminates:Theories and Their Applications:英文
  • 书号:9787030717238
    作者:李顶河
  • 外文书名:
  • 装帧:平装
    开本:特16
  • 页数:521
    字数:735000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2022-06-01
  • 所属分类:
  • 定价: ¥350.00元
    售价: ¥280.00元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

以复合材料结构广泛应用于航空航天领域为背景,本书介绍了复合材料层合结构最重要的分析理论及其工程应用。针对复合材料结构力学理论面临的诸多挑战,结合作者多年来对复合材料结构力学的研究工作,从剪切变形理论、状态空间理论、逐层理论出发,重点研究了复合材料结构的断裂、损伤、多物理、多尺度和灵敏度分析等问题,并突出考虑梁、板、壳、加筋及夹芯等典型复合材料结构形式。本书注重理论方法与程序实现相结合,给出了大量数值验证算例和工程实例。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Biography
    Preface
    Acronyms
    1. Composite analysis overview 1
    1.1. Introduction 1
    1.1.1. History of composites 1
    1.1.2. Applications of composites in aircrafts 3
    1.2. Composite laminates 5
    1.2.1. Definition and constituents 5
    1.2.2. Plies 6
    1.2.3. Laminates 7
    1.3. Analysis schemes 9
    1.3.1. Basic analysis schemes 9
    1.3.2. Basic equations 11
    1.3.3. Existing analysis theories 14
    1.3.4. Challenges 16
    1.3.5. Future developments 19
    1.4. General Hooke’s law 20
    1.4.1. Hyperelastic materials 20
    1.4.2. Monoclinic materials 22
    1.4.3. Orthotropic materials 22
    1.4.4. Isotropic materials 24
    1.4.5. Plane stress-reduced constitutive relations 24
    1.4.6. Transformation of material coefficients 25
    1.5. Energy principles 27
    1.5.1. Virtual displacement principle 27
    1.5.2. Hamilton’s principle 30
    1.5.3. Mixed variational principles 31
    References 33
    2. Shear deformation theories 35
    2.1. Introduction 35
    2.2. Classical laminated plate theory 36
    2.2.1. Displacement fields 36
    2.2.2. Kinematic equation 38
    2.2.3. Constitutive equations 42
    2.2.4. Governing equations 45
    2.3. First-order shear deformation theory 47
    2.3.1. Displacement fields 47
    2.3.2. Kinematic equation 48
    2.3.3. Shear correction factors 50
    2.3.4. Constitutive equations 50
    2.3.5. Governing equations 52
    2.4. High-order shear deformation theories 53
    2.4.1. Second-order shear deformation theory 53
    2.4.2. Third-order shear deformation theory 55
    2.4.3. Higher-order shear deformation theories 58
    2.5. Finite element formulations 58
    2.5.1. CLPT 58
    2.5.2. FSDT 63
    2.5.3. TSDT 64
    2.5.4. Numerical examples 68
    References 70
    3. State space theory 71
    3.1. Introduction 71
    3.2. Hamiltonian canonical equation of laminated plates 72
    3.2.1. Hamiltonian canonical equation of individual layer 72
    3.2.2. Exact solution of simply support single layer plates 74
    3.2.3. Hamiltonian canonical equation of laminated plates 77
    3.3. H-R variational principle of laminated plates 79
    3.3.1. H-R variational principle in rectangular coordinate system 79
    3.3.2. H-R variational principle in cylindrical coordinate system 84
    3.3.3. Numerical examples 86
    3.4. Finite element formulation of state space theory 87
    3.4.1. Hamiltonian isoparametric element 87
    3.4.2. Governing equations 90
    3.4.3. Boundary conditions 91
    3.4.4. Precise time-integration 92
    3.4.5. Free vibration 93
    3.4.6. Numerical examples 94
    3.5. Meshfree formulation of state space theory 95
    3.5.1. Interpolation using radial basis functions 95
    3.5.2. Radial basis functions 98
    3.5.3. Numerical examples 99
    3.6. Bonding imperfection in composite laminates 101
    3.6.1. Bonding imperfection 101
    3.6.2. State space equation of bonding imperfection problems 102
    3.6.3. Numerical examples 104
    References 109
    4. Layerwise theories 111
    4.1. Introduction 111
    4.2. Integrate layerwise methods 112
    4.2.1. Generalized laminate plate theory 112
    4.2.2. Layerwise FEM 113
    4.2.3. Other ILWMs 113
    4.3. Reddy’s layerwise theory 114
    4.3.1. Displacement fields 114
    4.3.2. Euler equations 116
    4.3.3. Constitutive equations 120
    4.3.4. Finite formulations 121
    4.3.5. Numerical examples 122
    4.4. Discrete layerwise theories 127
    4.4.1. Development of DLWM 127
    4.4.2. Displacement-based DLWM 128
    4.4.3. Carrera’s unified formulation 132
    4.4.4. Three-field variables DLWM 134
    4.4.5. Multiparticle model of multilayered materials 135
    References 136
    5. Extended layerwisemethod 139
    5.1. Introduction 139
    5.2. Extended layerwise method of laminated plates 140
    5.2.1. Displacements fields 140
    5.2.2. Description of transverse crack 145
    5.2.3. Hamilton’s principle and Euler–Lagrange equations 148
    5.2.4. Constitutive equations 151
    5.2.5. Finite element formulations 152
    5.2.6. Time integrations 155
    5.2.7. Numerical examples 156
    5.3. Extended layerwise method of doubly-curved laminated shells 167
    5.3.1. Geometric equations of laminated shells 167
    5.3.2. Hamilton’s principle and Euler–Lagrange equations 170
    5.3.3. Constitutive equations 173
    5.3.4. Governing equations 176
    5.3.5. Full extended layerwise method 179
    5.3.6. Numerical examples 182
    5.4. Fracture analysis of composite laminates 188
    5.4.1. Equivalent domain integral method 188
    5.4.2. Interaction integral method of isotropic materials 190
    5.4.3. Interaction integral method of orthotropic materials 191
    5.4.4. Interaction integral method of dynamic problems 192
    5.4.5. Local remeshing scheme 193
    5.4.6. Maximum circumferential tensile stress criterion 195
    5.4.7. VCCT based on XLWM 196
    5.4.8. Determination of delamination front 198
    5.4.9. Numerical examples 201
    5.5. Fast uniform-grid delamination scheme 208
    5.5.1. The fast uniform-grid delamination scheme 208
    5.5.2. Delamination region identification 209
    5.5.3. Numerical examples 212
    5.6. Microfracture analysis of composite laminates 220
    5.6.1. Force-bearing mechanisms of fibers 220
    5.6.2. Modeling scheme 220
    5.6.3. Fibers modeling 222
    5.6.4. Governing equations 223
    5.6.5. Numerical examples 225
    References 231
    6. Multiphysical analysis 235
    6.1. Introduction 235
    6.2. Thermomechanical analysis 236
    6.2.1. Variational principles considering temperature effect 236
    6.2.2. Displacement fields 238
    6.2.3. Euler equations 239
    6.2.4. Constitutive equations 241
    6.2.5. Finite element formulations 243
    6.2.6. Time integrations 245
    6.2.7. Evaluation of SIF for thermomechanical dynamic problems 247
    6.2.8. Numerical examples 248
    6.3. Piezoelectric analysis 250
    6.3.1. Displacement and potential fields 250
    6.3.2. Electromechanical variational principle 252
    6.3.3. Constitutive equations 253
    6.3.4. Finite element formulation 256
    6.3.5. Coupling modeling of laminated plates with piezoelectric patch 258
    6.3.6. Thermo-electromechanical dynamic analysis 260
    6.3.7. Numerical examples 266
    6.4. Chemo-thermomechanical analysis 276
    6.4.1. Chemo-thermomechanical fields 276
    6.4.2. Hamilton principle and Euler equations 277
    6.4.3. Constitutive equations 279
    6.4.4. Finite element formulations 282
    6.4.5. Times integration 285
    6.4.6. Chemomechanical analysis 286
    6.4.7. Numerical examples 287
    References 295
    7. Analysis of complex composites 297
    7.1. Introduction 297
    7.2. Layerwise/solid-element method of composite stiffened shells 299
    7.2.1. Modeling scheme 299
    7.2.2. Finite element formulations of the stiffener 300
    7.2.3. LW/SE method 301
    7.2.4. Numerical examples 302
    7.3. Dynamic thermomechanical analysis of stiffened plates 307
    7.3.1. Dynamic thermomechanical three-dimensional elements 307
    7.3.2. Dynamic thermomechanical XLW/SE 309
    7.3.3. Numerical examples 312
    7.4. Analysis methods of sandwich structures 316
    7.4.1. DLWM for the sandwich plates 316
    7.4.2. Layerwise/solid-element of composite sandwich plates 316
    7.4.3. LW/SE of sandwich plates with multilayer cores 321
    7.4.4. Modeling of the sandwich structures 323
    7.4.5. Numerical examples 324
    7.5. Dynamic thermomechanical analysis of sandwich plates 332
    7.5.1. LW/SE method of sandwich plates with single core 332
    7.5.2. LW/SE method of sandwich plates with multiply cores 337
    7.5.3. Numerical examples 341
    7.6. Dynamic thermo-chemomechanical coupling analysis on aeroengine turbine 346
    7.6.1. Three-dimensional thermo-chemomechanical formulations 346
    7.6.2. Transformation of coordinate system 349
    7.6.3. Modeling of aeroengine turbine with TBCs 351
    7.6.4. Numerical examples 357
    References 363
    8. Progressive failure analysis 365
    8.1. Introduction 365
    8.2. Continuous damage mechanics analysis framework 366
    8.2.1. Damage constitutive 366
    8.2.2. Damage initiation 367
    8.2.3. Damage evolution law 372
    8.3. Progressive failure analysis of low-velocity impact 373
    8.3.1. Mathematic model of impact problem 373
    8.3.2. Contact force based on Hertz’s law 375
    8.3.3. FEM implementation 376
    8.3.4. Numerical examples 377
    8.4. Progressive failure analysis of composites 382
    8.4.1. Discrete damage zone model 382
    8.4.2. DDZM-XLWM 384
    8.4.3. Fatigue analysis based on DDZM-XLWM 389
    8.4.4. Fatigue parameters 393
    8.4.5. Numerical examples 397
    8.5. Progressive thermomechanical DDZM-XLWM 408
    8.5.1. Problems descriptions 408
    8.5.2. Interfacial heat transfer 408
    8.5.3. Governing equations 410
    8.5.4. Numerical examples 414
    References 421
    9. Multiscale analysis 423
    9.1. Introduction 423
    9.2. Layerwise multiscale analysis method 424
    9.2.1. Multiscale analysis based on EST 424
    9.2.2. Homogenization method 425
    9.2.3. Layerwise multiscale analysis method 428
    9.2.4. Implementation 431
    9.2.5. Numerical examples 432
    9.3. Two-scale C2 of a laminated curved beams 434
    9.3.1. TSDT of curved beams 434
    9.3.2. Displacement decomposition 438
    9.3.3. Finite element formulations 440
    9.3.4. Nonlocal quadrature 443
    9.4. Three-scale C2 of laminated curved beams 444
    9.4.1. Displacement decomposition 444
    9.4.2. Finite element formulations 446
    9.4.3. Numerical examples 452
    9.5. C2 of laminated plates 455
    9.5.1. Framework of C2 for laminated plates 455
    9.5.2. Two-scale analysis of laminated plates 459
    9.5.3. Three-scale analysis of laminated plates 462
    References 467
    10. Sensitivity analysis 471
    10.1. Introduction 471
    10.2. Sensitivity analysis based on FEM 472
    10.2.1. Static responses 472
    10.2.2. Frequency and mode shape 473
    10.3. Evaluation methods 475
    10.3.1. AM 476
    10.3.2. FDM 476
    10.3.3. SAM 477
    10.3.4. Step sizes of SAM and FDM 477
    10.4. Sensitivity analysis based on SST 482
    10.4.1. Hybrid governing equations 482
    10.4.2. Hybrid governing equation of bonding imperfection problems 484
    10.4.3. Implement of sensitivity analysis 486
    10.4.4. Numerical examples 488
    References 493
    11. Analysis codes 495
    11.1. Overall framework 495
    11.2. Data structures and pre/post process 496
    11.2.1. Matrix storage formats 496
    11.2.2. Preprocess 497
    11.2.3. Post-process tool 500
    11.3. Solver models 502
    11.3.1. Solver_sdt 502
    11.3.2. Solver_sst 504
    11.3.3. Solver_rlw 505
    11.3.4. Solver_xlw 506
    References 509
    Index 511
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证