0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 无线电与电子物理 > 电磁分析中的预条件方法

相同语种的商品

浏览历史

电磁分析中的预条件方法


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
电磁分析中的预条件方法
  • 书号:9787030515094
    作者:陈如山
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:349
    字数:440000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2018-05-01
  • 所属分类:
  • 定价: ¥145.00元
    售价: ¥116.00元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书主要介绍了预条件方法的基本理论及其在电磁分析中的应用,包括计算电磁学中的主要数值方法、Krylov子空间迭代方法、预条件技术、迭代算法的自适应加速技术、预条件技术的优化措施、基于物理模型的预条件技术、基于特征谱信息的快速迭代算法及预条件技术、高阶有限元及多重网格迭代法、高阶矩量法及多重网格方法、块迭代算法、并行预条件技术等,重点介绍了多种预条件技术在矩量法和有限元方法中的应用。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    前言
    第1章 绪论 1
    1.1 计算电磁学发展现状 2
    1.2 迭代解法和预条件技术 5
    1.3 内容安排 9
    参考文献 10
    第2章 计算电磁学中的主要数值方法 26
    2.1 有限元法 26
    2.1.1 电磁场边值问题 27
    2.1.2 伽辽金加权余量法与里茨变分法 27
    2.1.3 有限元法的步骤 28
    2.1.4 数值结果 31
    2.2 矩量法 35
    2.2.1 矩量法的离散化过程 35
    2.2.2 积分方程的选取 36
    2.2.3 散射场的计算 39
    2.2.4 多层快速多极子方法 40
    2.2.5 并行多层快速多极子方法 44
    2.2.6 数值结果 47
    参考文献 49
    第3章 Krylov子空间迭代方法 53
    3.1 直接解法和迭代解法简介 53
    3.2 迭代方法的分类 54
    3.3 共轭梯度类迭代方法 55
    3.4 广义最小余量迭代算法 56
    3.5 常用Krylov子空间迭代算法的比较 58
    3.6 常用迭代算法在体积分方程中的应用 58
    3.7 常用迭代算法在表面积分方程中的应用 64
    参考文献 68
    第4章 预条件技术 70
    4.1 预条件技术概述 70
    4.2 稠密矩阵的稀疏化 71
    4.3 预条件广义最小余量迭代算法 72
    4.4 对角预条件技术 73
    4.5 对称超松弛预条件技术 74
    4.6 不完全LU分解预条件技术 74
    4.7 稀疏近似逆预条件技术 75
    4.8 几种常用预条件技术性能的比较 77
    参考文献 82
    第5章 迭代算法的自适应加速技术 84
    5.1 GMRES迭代算法收敛性分析 84
    5.2 基于GMRES迭代算法的自适应加速技术概述 86
    5.3 Krylov子空间扩大技术 87
    5.3.1 扩大子空间的广义最小余量迭代算法 87
    5.3.2 松散的广义最小余量迭代算法 90
    5.4 特征谱重复循环技术 92
    5.4.1 隐式循环的广义最小余量迭代算法 92
    5.4.2 显式循环的广义最小余量迭代算法 95
    5.5 特征谱预条件的广义最小余量迭代算法 97
    5.6 内外迭代技术 99
    5.6.1 灵活的广义最小余量迭代算法 99
    5.6.2 嵌套的广义最小余量迭代算法 102
    5.7 几种加速技术性能的比较 103
    5.8 其他迭代加速技术 107
    参考文献 111
    第6章 预条件技术的优化措施 114
    6.1 对称超松弛预条件技术的有效实现 114
    6.2 不完全LU分解预条件技术中的扰动技术 117
    6.2.1 对角线扰动技术 117
    6.2.2 MFIE主值项扰动技术 120
    6.3 多层快速多极子方法中一种有效的稀疏近似逆预条件技术 125
    6.4 混合预条件技术 129
    6.4.1 双步混合预条件技术 129
    6.4.2 SSOR预条件技术与GMRESR及FGMRES结合算法 134
    6.5 多重预条件技术 138
    6.5.1 多重预条件共轭梯度算法 138
    6.5.2 多重预条件广义最小余量算法 139
    6.6 预条件矩阵插值 142
    6.6.1 基于有理函数模型的阻抗矩阵插值技术 142
    6.6.2 基于有理函数模型的稀疏近似逆预条件矩阵插值技术 145
    参考文献 149
    第7章 基于物理模型的预条件技术 151
    7.1 电场矢量有限元方程的病态特性 151
    7.2 基于A-V场的预条件技术 153
    7.2.1 A-V场有限元公式 153
    7.2.2 数值结果与分析 155
    7.3 基于转移Laplace算子的预条件技术 158
    7.3.1 转移Laplace算子的预条件 158
    7.3.2 数值结果与分析 160
    7.4 基于吸收边界条件的预条件技术 167
    7.4.1 快速多极子结合有限元方法理论及公式 167
    7.4.2 利用吸收边界条件构造预条件矩阵 170
    7.4.3 数值结果与分析 173
    参考文献 177
    第8章 基于特征谱信息的快速迭代算法及预条件技术 180
    8.1 改进的扩大子空间广义最小余量迭代算法 180
    8.1.1 GMRESE迭代算法基本原理 180
    8.1.2 GMRESE迭代算法的收敛性能 182
    8.1.3 GMRESE迭代算法的性能随参数变化情况 186
    8.1.4 GMRESE迭代算法在单站RCS计算中的应用 189
    8.2 基于特征谱信息的代数多重网格迭代算法 192
    8.2.1 基于特征谱信息的代数多重网格迭代算法基本原理 192
    8.2.2 SMG迭代算法的收敛性能 195
    8.2.3 SMG迭代算法的性能随参数变化情况 197
    8.2.4 SMG迭代算法在单站RCS计算中的应用 199
    8.2.5 SMG性能随未知量变化情况 201
    8.3 基于特征谱信息的多步混合预条件技术 203
    8.3.1 基于特征谱信息的双步混合预条件技术的基本思想 203
    8.3.2 基于特征谱信息的双步混合预条件技术的性能 205
    8.3.3 基于特征谱信息的多步混合预条件 208
    8.3.4 多步混合预条件技术在单站RCS计算中的应用 211
    8.3.5 基于等级基函数的双步谱预条件技术 216
    参考文献 222
    第9章 高阶有限元及多重网格迭代法 224
    9.1 高阶等级基函数 225
    9.2 p-型多重网格预条件技术 229
    9.2.1 p-型多重网格算法 229
    9.2.2 数值结果与分析 231
    9.3 Schwarz预条件技术 238
    9.3.1 Schwarz算法概述 238
    9.3.2 数值结果与分析 239
    9.4 有限元的辅助空间预条件技术 243
    9.4.1 ASP的基本原理 243
    9.4.2 算例分析 246
    参考文献 250
    第10章 高阶矩量法及多重网格方法 253
    10.1 基于高阶单元的Calder-n算子预条件技术 253
    10.1.1 基于Calder-n算子的积分方程建立 254
    10.1.2 构造基于高阶单元的Calder-n算子预条件技术 256
    10.1.3 数值结果与分析 261
    10.2 基于网格细分的多分辨基函数及预条件技术 269
    10.2.1 基于CRWG基函数构造的多分辨基函数 270
    10.2.2 多分辨预条件及其改进 274
    10.2.3 多分辨预条件与快速多极子算法的结合 276
    10.2.4 多分辨基函数及预条件的数值算例与分析 276
    10.3 新型多重网格预条件技术研究 280
    10.3.1 粗网格基函数的构造及粗网格矩阵构造 280
    10.3.2 多重网格预条件的构造 282
    10.3.3 数值算例分析与讨论 284
    参考文献 292
    第11章 块迭代算法 296
    11.1 块GMRES迭代算法 296
    11.2 块GMRES-DR迭代算法 297
    11.3 块GMRESE迭代算法 298
    11.4 块SMG迭代算法 299
    11.5 数值结果 301
    参考文献 305
    第12章 并行预条件技术研究 306
    12.1 并行计算概述 306
    12.2 有限元方法中并行区域分解算法及预条件技术 309
    12.2.1 并行代数域分解算法 310
    12.2.2 并行撕裂对接算法 319
    12.3 矩量法中并行稀疏近似逆预条件技术 328
    12.3.1 近场稀疏化稀疏近似逆预条件 328
    12.3.2 并行稀疏近似逆预条件构造原理 330
    12.3.3 并行稀疏近似逆数值结果与讨论 335
    12.3.4 并行稀疏近似逆预条件结合幂级数展开技术 343
    参考文献 346
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
经营资质
营业执照
出版社经营许可证