0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: > SOLITON(孤立子)

相同作者的商品

销售排行榜

浏览历史

SOLITON(孤立子)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
SOLITON(孤立子)
  • 书号:9787030825148
    作者:郭柏灵,姚玉芹,赵立臣
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:341
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2025-06-01
  • 所属分类:
  • 定价: ¥168.00元
    售价: ¥132.72元
  • 图书介质:
    纸质书 按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书主要对孤立子的由来,基本问题以及它的数学物理方法做了简要的介绍,在此基础上,增加了怪波和波湍流等比较重要的最新研究成果。孤立子理论是重要的数学和物理理论,它揭示了非线性波动现象中的一种特殊行为,即孤立波在碰撞后能够保持形状、大小和方向不变。这一发现不仅在数学和物理领域产生了深远的影响,还推动了非线性科学的发展,使其成为非线性科学的三大普适类之一。此外,孤立子理论在多个学科领域都有广泛的应用。例如,在物理学中,孤立子理论被用于解释和预测各种非线性波动现象,如光学孤子、声学孤子等。在生物学、医学、海洋学、经济学和人口问题等领域,孤立子理论也发挥着重要作用,为解决这些领域中的非线性问题提供了新的思路和方法。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Chapter 1 Introduction 1
    1.1 The Origin of Solitons 1
    1.2 KdV Equation and Its Soliton Solutions 4
    1.3 Soliton Solutions for Nonlinear Schr.dinger Equations and Other Nonlinear Evolutionary Equations 6
    1.4 Experimental Observation and Application of Solitons 10
    1.5 Research on the Problem of Soliton Theory 10
    References 11
    Chapter 2 Inverse Scattering Method 12
    2.1 Introduction 12
    2.2 The KdV Equation and Inverse Scattering Method 12
    2.3 Lax Operator and Generalization of Zakharov, Shabat, AKNS21
    2.4 More General Evolutionary Equation (AKNS Equation) 28
    2.5 Solution of the Inverse Scattering Problem for AKNS Equation 35
    2.6 Asymptotic Solution of the Evolution Equation (t→∞) 46
    2.6.1 Discrete spectrum 46
    2.6.2 Continuous spectrum 49
    2.6.3 Estimation of discrete spectrum.52
    2.7 Mathematical Theory Basis of Inverse Scattering Method.56
    2.8 High-Order and Multidimensional Scattering Inversion Problems 74
    References 83
    Chapter 3 Interaction of Solitons and Its Asymptotic Properties 85
    3.1 Interaction of Solitons and Asymptotic Properties of t→ ∞ 85
    3.2 Behaviour State of the Solution to KdV Equation Under Weak
    Dispersion and WKB Method 94
    3.3 Stability Problem of Soliton .100
    3.4 Wave Equation under Water Wave and Weak Nonlinear Effect 102
    References 109
    Chapter 4 Hirota Method 111
    4.1 Introduction 111
    4.2 Some Properties of the D Operator 113
    4.3 Solutions to Bilinear Differential Equations.115
    4.4 Applications in Sine-Gordon Equation and MKdV Equation 117
    4.5 B.cklund Transform in Bilinear Form 125
    References 127
    Chapter 5 B.cklund Transformation and Infinite Conservation Law 129
    5.1 Sine-Gordon Equation and B.cklund Transformation 129
    5.2 B.cklund Transformation of a Class of Nonlinear Evolution Equation 134
    5.3 B Transformation Commutability of the KdV Equation 141
    5.4 B.cklund Transformations for High-Order KdV Equation and High-Dimensional Sine-Gordon Equation 143
    5.5 B.cklund Transformation of Benjamin-Ono Equation 145
    5.6 Infinite Conservation Laws for the KdV Equation 151
    5.7 Infinite Conserved Quantities of AKNS Equation 154
    References 157
    Chapter 6 Multidimensional Solitons and Their Stability 159
    6.1 Introduction 159
    6.2 The Existence Problem of Multidimensional Solitons 160
    6.3 Stability and Collapse of Multidimensional Solitons 174
    References 180
    Chapter 7 Numerical Calculation Methods for Some Nonlinear Evolution Equations 182
    7.1 Introduction 182
    7.2 The Finite Difference Method and Galerkin Finite Element Method for the KdV Equations 184
    7.3 The Finite Difference Method for Nonlinear Schr.dinger Equations 189
    7.4 Numerical Calculation of the RLW Equation 194
    7.5 Numerical Computation of the Nonlinear Klein–Gordon Equation 195
    7.6 Numerical Computation of a Class of Nonlinear Wave Stability Problems 197
    References 202
    Chapter 8 The Geometric Theory of Solitons.204
    8.1 B.cklund Transform and Surface with Total Curvature K = .1 204
    8.2 Lie Group and Nonlinear Evolution Equations 207
    8.3 The Prolongation Structure of Nonlinear Equations 211
    References 217
    Chapter 9 The Global Solution and “Blow up” Problem of Nonlinear Evolution Equations.219
    9.1 Nonlinear Evolutionary Equations and the Integral Estimation Method 219
    9.2 The Periodic Initial Value Problem and Initial Value Problem of the KdV Equation 221
    9.3 Periodic Initial Value Problem for a Class of Nonlinear Schr.dinger Equations 229
    9.4 Initial Value Problem of Nonlinear Klein-Gordon Equation 235
    9.5 The RLW Equation and the Galerkin Method 243
    9.6 The Asymptotic Behavior of Solutions and “Blow up” Problem for t→∞ 251
    9.7 Well-Posedness Problems for the Zakharov System and Other Coupled Nonlinear Evolutionary Systems 256
    References 258
    Chapter 10 Topological Solitons and Non-topological Solitons 261
    10.1 Solitons and Elementary Particles 261
    10.2 Preliminary Topological and Homotopy Theory 265
    10.3 Topological Solitons in One-Dimensional Space 270
    10.4 Topological Solitons in Two-Dimensional 276
    10.5 Three-Dimensional Magnetic Monopole Solution 282
    10.6 Topological Solitons in Four-Dimensional Space—Instantons 288
    10.7 Nontopological Solitons 292
    10.8 Quantization of Solitons 296
    References 301
    Chapter 11 Solitons in Condensed Matter Physics.303
    11.1 Soliton Motion in Superconductors 304
    11.2 Soliton Motion in Ferroelectrics 315
    11.3 Solitons of Coupled Systems in Solids 318
    11.4 Statistical Mechanics of Toda Lattice Solitons 322
    References 327
    Chapter 12 Rogue Wave and Wave Turbulence 329
    12.1 Rogue Wave 329
    12.2 Formation of Rogue Wave 329
    12.3 Wave Turbulence 333
    12.4 Soliton and Quasi Soliton 336
    12.4.1 The Instability and Blow-up of Solitons 338
    12.4.2 The Case of Quasi-Solitons 339
    References 341
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证