Huang Yisheng

BCI-Algebra

(BCI-代数)

Responsible Editors: Lü Hong, Zu Cui'e

Copyright © 2006 by Science Press
Published by Science Press
16 Donghuangchenggen North Street
Beijing 100717, China
Printed in Beijing
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

In memory of my master Professor Chen Zhaomu

Preface

This book is mainly designed for the graduate students who are interested in the theory of BCK and BCI-algebras.

BCI-algebras are a wider class than BCK-algebras, introduced by Kiyoshi Iséki in 1966. BCI-algebras as a class of logical algebras are the algebraic formulations of the set difference together with its properties in set theory and the implicational functor in logical systems. They are closely related to partially ordered commutative monoids as well as various logical algebras. Their names are originated from the combinators B, C, K and I in combinatory logic. The early research work was mainly carried out among the Japanese mathematicians Kiyoshi Iséki and Shotaro Tanaka, etc. who did a great deal of foundation work. Since late 1970s, their work has been paid much attention. In particular, the participation in the research of Polish mathematicians Tadeusz Traczyk and Andrzej Wroński as well as Australian mathematician William H. Cornish, etc. is making this branch of algebra develop rapidly. Many interesting and important results are discovered continuously. Now, the theory of BCI-algebras has been widely spread.

The structure of this book is similar to that of Two B-Algebras, the teaching materials by Zhaomu Chen. Some of the contents are drawn from the following two books: BCK-Algebras by Jie Meng and Young Bae Jun, and An Introduction to BCI-Algebras by Jie Meng and Yonglin Liu. Most contents come from firsthand information. Because Professor Huishi Li's axiom system is adopted and also because this book's system is required, many proofs are properly modified. This book is only an analysis on the general theoretical basis of BCI-algebras. Therefore the materials are somewhat limited. For example, p-semisimple algebras only take a little space, contents on the topology and category theories and fuzzy BCI-algebras are omitted. I think, it may be more proper to do so for an elementary book. We try what we can to use all kinds of notations and terminologies used by most papers' authors. More examples are given and the materials
are handled more systematically and various arguments are written in more details so as to be read easily. Quite a lot of exercises are arranged at the end of every section. They are also the component part of our theory. The exercises with the sign $*$ are more difficult for the beginners who can leave them away. The two appendices at the back of the text will be of great value to those who are interested in further research of BCI-algebras.

For many times the late Professor Zhaomu Chen, my former teacher, encouraged me to compile this book. Professors Jie Meng, Hao Jiang, Young Bae Jun, Yonglin Liu and Doctor Eun Hwan Roh provided much valuable information. Professor Hao Jiang went over the manuscript and pointed out some mistakes. Miss Liying Chen in Longyan Teachers' College provided me much help in English expression. Mr Shenrong Lu in Longyan Teachers' College gave me much guidance in using computer. Mr Wenqing Zhang in Sanming College read through all pages and corrected some spelling and grammatical mistakes. Sanming College that I am working in now offers financial aid for publication of the book. Here, I extend my heartfelt thanks to all those who have supported, helped and encouraged me to write this book.

Contents

Chapter 0 Introduction 1
§0.1 Mappings Abelian Groups Binary Relations 2
§0.2 Lattices Boolean Algebras 5
Chapter 1 General Theory 11
§1.1 Definition and Elementary Properties 11
§1.2 BCK-Algebras 21
$\S 1.3$ p-Semisimple Algebras 33
§1.4 Ideals 44
§1.5 Congruences and Quotient Algebras 58
§1.6 BCI-Homomorphisms 67
§1.7 Direct Sums and Direct Products 78
Chapter 2 Commutative BCK-Algebras 93
§2.1 Definition and Elementary Properties 93
§2.2 Commutative BCK-Lattices 106
§2.3 Structures of Certain Commutative BCK-Algebras 112
§2.4 Generalized Commutative BCK-Algebras 121
§2.5 Commutative Ideals 132
§2.6 Quasi-Commutative BCI-Algebras 142
Chapter 3 Positive Implicative and Implicative BCK-Algebras 153
§3.1 Positive Implicative BCK-Algebras 153
§3.2 Implicative BCK-Algebras 162
§3.3 Positive Implicative and Implicative BCI-Algebras 174
§3.4 Positive Implicative Ideals 188
§3.5 Implicative Ideals 198
Chapter 4 BCI-Algebras with Condition (S) 209
§4.1 Definition and Elementary Properties 209
§4.2 Commutative BCK-Algebras with Condition (S) 221
§4.3 Positive Implicative BCK-Algebras with Condition (S) 229
§4.4 Implicative BCK-Algebras with Condition (S) 239
§4.5 Commutative Residual Pomonoids 247
Chapter 5 Normal BCI-Algebras 259
§5.1 Simple BCI-Algebras 259
§5.2 Semisimple BCI-Algebras 264
§5.3 J-Semisimple BCI-Algebras 275
§5.4 Normal BCI-Algebras 279
§5.5 Normal Ideals in BCK-Algebras 286
Chapter 6 Radicals and Ideals 291
§6.1 Radicals 291
$\S 6.2$ p-Semisimple Ideals 298
§6.3 Associative and Quasi-Associative Ideals 302
§6.4 Irreducible Ideals 307
Appendix A 313
Appendix B 336
Bibliography 343
Index 353

Chapter 0

Introduction

BCK-algebras and BCI-algebras are abbreviated to two B-algebras. The former was raised in 1966 by Y. Imai and K. Iséki, Japanese mathematicians, and the latter was put forward in the same year due to K. Iséki.

Two B-algebras are originated from two different sources. One of the motivations is based on set theory. In set theory, there are three most elementary and fundamental operations. They are the union, intersection and set difference. If we consider those three operations and their properties, then as a generalization of them, we have the notion of Boolean algebras. If we take both of the union and intersection, then as a general algebra, the notion of distributive lattices is obtained. Moreover, if we consider the union or the intersection alone, we have the notion of upper semilattices or lower semilattices. However, the set difference together with its properties had not been considered systematically before K. Iséki.

Another motivation is from propositional calculi. There are some systems which contain the only implicational functor among logical functors, such as the system of positive implicational calculus, the system of weak positive implicational calculus, BCK-system and BCI-system. Undoubtedly there are common properties among those systems.

We know very well that there are close relationships between the notions of the set difference in set theory and the implication functor in logical systems. For example, we have the following simple inclusion relations in set theory:

$$
\begin{aligned}
(A-B)-(A-C) & \subseteq C-B \\
A-(A-B) & \subseteq B
\end{aligned}
$$

These are similar to the propositional formulas in propositional calculi:

$$
\begin{aligned}
&(p \rightarrow q) \rightarrow((q \rightarrow r) \\
&p \rightarrow(p \rightarrow r)), \\
& p \rightarrow((p \rightarrow q) \rightarrow q) .
\end{aligned}
$$

It raises the following questions. What are the most essential and fundamental properties of these relationships? Can we formulate a general
algebra from the above consideration? How will we find an axiom system to establish a good theory of general algebras? Answering these questions, K. Iséki formulated the notions of two B-algebras in which BCI-algebras are a wider class than BCK-algebras. Their names are taken from BCK and BCI-systems in combinatory logic.

§0.1 Mappings Abelian Groups Binary Relations

We begin our discussion with a brief survey of some fundamental notions which will be frequently mentioned.

A mapping $f: A \rightarrow B$ is a rule of correspondences from a nonempty set A to another set B, satisfying the condition that for any $a \in A$ there exists a unique element $b \in B$ such that a corresponds with b (symbolically, $f(a)=b$ or $f: a \mapsto b$), where A is called the domain of f, B the codomain of f, and the set, $\operatorname{Im}(f)=\{f(a) \mid a \in A\}$, the image of f. Also, we call b the image of a under f, and a an inverse image of b under f.

In general, an element b in B may have many inverse images, or may not have any one. If for all $b \in B$ there is at least an inverse image of b, i.e., $\operatorname{Im}(f)=B$, we call f a surjection. If for any $b \in \operatorname{Im}(f)$ there is one and only one inverse image of b, f is called an injection. Of course, a bijection $f: A \rightarrow B$ is a mapping which is both surjective and injective.

Denoting a^{*} for the image of a under a mapping $f: A \rightarrow B$, we can regard * as an operation from A to B. From the above statements of mappings, an operation $*$ from A to B has to satisfy: (1) uniqueness: the result a^{*} after a through the operation $*$ is unique; (2) closeness: a^{*} must belong to B. For example, the power $a^{*_{1}}=a^{2}(a \in Z)$ can be regarded as an operation $*_{1}$ from the set Z of all integers to itself, and $(a, b)^{*_{2}}=|a b|(a, b \in Z)$ as an operation $*_{2}$ from the Cartesian product set $Z \times Z$ to Z, where $|\bullet|$ is the absolute value of \bullet.

Let A be a nonempty set. An operation $*$ from the Cartesian product set A^{n} to A is called an n-ary operation on A. Especially, a 2-ary operation is just a binary operation, and a 1-ary operation is a unary operation. Then the above operation $*_{1}$ is a unary operation on Z, and $*_{2}$ is a binary operation on Z.

There are some elements in a set, which play special roles. For example, 0 and 1 in Z have respectively the familiar properties: $x+0=x$ and $x \cdot 1=x$ for all $x \in Z$. Such an element is actually a special mapping, and so in our point of view, it can be regarded as a so-called nullary operation (usually, it is called a constant).

A system consisting of a nonempty set A together with some operations on A and their laws is called an algebra. Those operations on A are usually described by the type of this algebra. For example, a group $(G ; \cdot, e)$ is an algebra of type $(2,0)$. That is to say, this system consists of a nonempty set G and a binary operation • on G as well as a constant e (i.e., a nullary operation). Similarly, a ring R is an algebra of type $(2,2,0)$, and a field F is of type $(2,2,0,0)$.

A nonempty subset B of an algebra A, which contains all constants of A if they exist, is called a subalgebra of A if B is closed under all operations on A and if all laws in A are still valid in B.

Abelian groups will play a basic role in BCI-algebras. We recall that an algebra $(G ; \cdot, e)$ of type $(2,0)$ is said an Abelian group (or a commutative group) if the following hold:
(1) associative law: $(a b) c=a(b c)$ for any $a, b, c \in G$;
(2) commutative law: $a b=b a$ for any $a, b \in G$;
(3) the unit element of G exists: there is an element $e \in G$ such that $e a=a$ for any $a \in G ;$
(4) every element in G is invertible: for any $a \in G$, there exists $b \in G$ such that $a b=e$.

Several simple examples of Abelian groups are as follows: the additive group of integers, the additive group of residue classes modulo n, the group of roots of unity.

We also recall that an algebra $(M ; \cdot, e)$ of type $(2,0)$ is called a monoid if the operation - on M satisfies the associative law and the constant e is a unit element of M. Any group is obviously a monoid. A sub-semigroup S of a monoid M means that S is a nonempty subset of M and S is closed under the operation • on M. A submonoid of M is just a subalgebra of the monoid M as an algebra. A sub-semigroup is generally not a submonoid, for example, the set $\{1,2,3, \cdots\}$ of natural numbers is a sub-semigroup of the additive group $(Z ;+, 0)$ of integers, but not a submonoid of it.

Because every element a in a group G has its inverse element a^{-1}, we can induce a binary operation $*$ on G by putting $a * b=a \cdot b^{-1}$. It is interesting that if a non-vacuous subset H of G is closed under $*$, it must be a subgroup of G. However, if H is closed under •, it may not be a subgroup of G. From this, we see that the operation $*$ on G is sometimes more effective and useful than the operation \cdot on G, although $*$ does not satisfy the associative and commutative laws.

Binary relations are a generalization of the notion of mappings. Roughly speaking, a binary relation is an assertion determining the correctness between two objects. We now describe this notion. Let A, B be two nonvacuous sets and let θ be an assertion between A and B. If each ordered pair (a, b) of elements $a \in A$ and $b \in B$ either fits or unfits the assertion θ, we call θ a binary relation between A and B. Especially, if $A=B$, we say the relation θ is on A. We denote $a \sim b(\theta)$ for a and b fitting the relation θ. In the viewpoint of abstract, a binary relation θ between A and B can be simply regarded as a subset of $A \times B$. In fact, we first note that $\{(a, b) \in A \times B \mid a \sim b(\theta)\}$ is evidently a subset of $A \times B$. Next, given a subset C of $A \times B$, we can provide a binary relation θ between A and B as follows: $a \sim b(\theta)$ if and only if $(a, b) \in C$.

Equivalence relations are an important class of binary relations. If a binary relation θ on A satisfies the following: for any $a, b, c \in A$,
(1) reflexivity: $a \sim a(\theta)$;
(2) symmetry: $a \sim b(\theta)$ implies $b \sim a(\theta)$;
(3) transitivity: $a \sim b(\theta)$ and $b \sim c(\theta)$ imply $a \sim c(\theta)$,
then we call it an equivalence relation on A. An interesting example of such relations is the congruence modulo n in number theory. In this case, we are used to denote $a \sim b(\theta)$ by $a \equiv b(\bmod n)$ in the sense that $a-b$ is a multiple of n.

A partition π of a set A means that π is a collection of non-vacuous subsets of A such that the union of all members in π is the whole of A and distinct members in π are disjoint. An equivalence relation can be characterized by a partition. In fact, if θ is an equivalence relation on A, then the quotient set $\pi=\{\bar{a} \mid a \in A\}$ determines a partition of A, where \bar{a} is the set $\{x \in A \mid x \sim a(\theta)\}$, called the equivalence class containing the element a. Conversely, if π is a partition of A, then the following relation θ on A is an equivalence relation: $a \sim b(\theta)$ if and only if $a, b \in C$ for some $C \in \pi$.

Another important class of binary relations is partial orderings. For such a relation θ, the symbol $a \sim b(\theta)$ is usually written as $a \leqslant b$. A binary relation \leqslant on a set A is called a partial ordering if the following hold: for any $a, b, c \in A$,
(1) reflexivity: $a \leqslant a$;
(2) anti-symmetry: $a \leqslant b$ and $b \leqslant a$ imply $a=b$;
(3) transitivity: $a \leqslant b$ and $b \leqslant c$ imply $a \leqslant c$.

A typical example of partial orderings is the inclusion relation \subseteq of sets. If \leqslant is a partial ordering on A, the system $(A ; \leqslant)$ is said a partially ordered set. If we do have either $a \leqslant b$ or $b \leqslant a$ for any $a, b \in A$, we call such a partially ordered set $(A ; \leqslant)$ a totally ordered set. Sometimes, we denote $a \leqslant b$ and $a \neq b$ by $a<b$. And we write $a \geqslant b$ as an alternative for $b \leqslant a$ and $a>b$ for $b<a$.

§0.2 Lattices Boolean Algebras

Given two elements a and b in a partially ordered set $(L ; \leqslant)$, an element u in L is said a lower bound of a and b if $u \leqslant a$ and $u \leqslant b$. The element u is said a greatest lower bound of a and b if (1) u is a lower bound of a and b; (2) $v \leqslant u$ for every lower bound v of a and b. The greatest lower bound is clearly unique if it exists. In a similar fashion we can define an upper bound and the least upper bound of a and b. The greatest lower bound is often abbreviated to g.l.b., and the least upper bound to l.u.b. There are some partially ordered sets, each of which has the greatest element or the least element. Sometimes, we denote them by 1 and 0 , called the unit element and the zero element respectively.

A partially ordered set $(L ; \leqslant)$ is called a lower semilattice if any two elements in L have the greatest lower bound of them. It is called an upper semilattice if each pair of elements in L has its least upper bound. If $(L ; \leqslant)$ is both a lower semilattice and an upper semilattice, we call it a lattice.

Let's list several examples of lattices as preliminaries. It has been known that the partial ordering of a partially ordered set of finite order can be described by a diagram, called a Hasse diagram.

Example 0.2.1. Let L be the set $\{x, y, z, 0,1\}$. Define two partial orderings on L by the following Hasse diagrams respectively:

Then L with respect to each of these orderings forms a lattice. We call the former the rhombus lattice, and the latter the pentagon lattice.

We always denote \subseteq for the inclusion relation of sets in this book. If A is properly contained in B, we will write it by $A \subset B$.

Example 0.2.2. (1) $\left(2^{S} ; \subseteq\right)$ is a lattice, called the power set lattice of S, where 2^{S} is the power set of a set S (i.e., the collection of all subsets of S), and g.l.b. $\{A, B\}=A \cap B$, l.u.b. $\{A, B\}=A \cup B$ for any $A, B \in 2^{S}$.
(2) $(L(V) ; \subseteq)$ is a lattice, called the subspace lattice of V, where $L(V)$ is the collection of the whole subspaces of a vector space V over a field, and g.l.b. $\{A, B\}=A \cap B$, l.u.b. $\{A, B\}$ is the subspace $A+B$ spanned by A and B.

We are used to denote $a \wedge b$ for g.l.b. $\{a, b\}$ and $a \vee b$ for l.u.b. $\{a, b\}$. If $(L ; \leqslant)$ is a lower semilattice, then \wedge is a binary operation on L and we can induce an algebra $(L ; \wedge)$ of type 2 , satisfying the following conditions:
(1) idempotent law: $a \wedge a=a$;
(2) commutative law: $a \wedge b=b \wedge a$;
(3) associative law: $(a \wedge b) \wedge c=a \wedge(b \wedge c)$.

The converse is still true. That is because we can induce the following partial ordering \leqslant on L such that $(L ; \leqslant)$ is a lower semilattice:

$$
a \leqslant b \text { if and only if } a \wedge b=a \text { for all } a, b \in L
$$

For the case that $(L ; \leqslant)$ is an upper semilattice, there is also a similar situation. Then, as we have known, we have an alternative definition of lattices as follows. An algebra $(L ; \wedge, \vee)$ of type $(2,2)$ is called a lattice if the following laws hold:
$\left(\mathrm{L}_{1}\right)$ idempotent law: $a \wedge a=a$ and $a \vee a=a ;$
$\left(\mathrm{L}_{2}\right)$ commutative law: $a \wedge b=b \wedge a$ and $a \vee b=b \vee a$;
$\left(\mathrm{L}_{3}\right)$ associative law: $(a \wedge b) \wedge c=a \wedge(b \wedge c)$ and $(a \vee b) \vee c=a \vee(b \vee c)$;
$\left(\mathrm{L}_{4}\right)$ absorptive law: $a \wedge(a \vee b)=a$ and $a \vee(a \wedge b)=a$.
From our definition of subalgebras, a sublattice M of a lattice $(L ; \wedge, \vee)$ means that $M \neq \varnothing$ and M is closed under \wedge and \vee (here, the laws L_{1} to L_{4} are naturally valid in $\left.M\right)$. Then M with respect to the induced partial ordering \leqslant forms a lattice $(M ; \leqslant$, where $a \leqslant b$ if and only if $a \wedge b=a$ (or equivalently, $a \vee b=b$). It is worth attending that given a nonempty subset of a lattice $(L ; \leqslant)$, it with respect to \leqslant may form a lattice where \leqslant is the partial ordering defined on L, but such a lattice may not be a sublattice of $(L ; \leqslant)$. For instance, the subspace lattice $(L(V) ; \subseteq)$ of a vector space V is generally not a sublattice of the power set lattice $\left(2^{V} ; \subseteq\right)$ of V because the union $A \cup B$ of two subspaces A and B need not be a subspace of V. The occurrence of this phenomenon results from which the partial ordering \leqslant is not a binary operation on L.

A lattice L is called modular if it satisfies the modular law:

$$
a \geqslant b \text { implies } a \wedge(b \vee c)=b \vee(a \wedge c),
$$

or equivalently

$$
a \leqslant b \text { implies } a \vee(b \wedge c)=b \wedge(a \vee c)
$$

All of the lattices in Examples 0.2.1 and 0.2.2 are modular except the pentagon lattice. From lattice theory, a lattice L is modular if and only if it does not contain any pentagon sublattices of L.

A totally ordered subset of a partially ordered set L is called a chain. An element a in L is said a cover of another element b in L if $a>b$ and there does not exist any element x in L such that $a>x>b$. A connected chain from a to b is a chain

$$
a=a_{0}>a_{1}>a_{2}>\cdots>a_{n}=b
$$

such that a_{i-1} covers $a_{i}, i=1,2, \cdots, n$. In this case the number n is called the length of this chain. The greatest number in the lengths of all connected chains from a to b is said the length from a to b. If there is not such a greatest number, we say the length from a to b is infinite. If L contains the zero element 0 , the length from a to 0 is often called the length of a. A partially ordered set is said to be of finite length if the lengths of all connected chains are bounded. The following is an interesting result in lattice theory.

Theorem 0.2.1. Let a, b be elements in a modular lattice L such that $a>b$. If L is of finite length, then all connected chains from a to b have the same length.

A lattice L is called distributive if it satisfies the distributive law:

$$
a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
$$

or equivalently

$$
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
$$

Every totally ordered set is obviously a distributive lattice. In Examples 0.2 .1 and 0.2 .2 , the power set lattice is the only distributive lattice. As is well known, a distributive lattice must be modular, but the inverse is false. It is worth pointing out that from lattice theory, a distributive lattice is in essence a set algebra because it is isomorphic to a sublattice of the power set lattice 2^{S} of some set S. The following is a useful criterion for the distributivity of a lattice.

Theorem 0.2.2. A lattice L is distributive if and only if it contains neither a pentagon sublattice nor a rhombus sublattice.

Let L be a lattice with the zero element 0 and the unit element 1. Given a pair of elements a, b in L, if $a \wedge b=0$ and $a \vee b=1$, then one of a and b is called a complement of the other. If every $a \in L$ has its complements, we say L is a complemented lattice. The rhombus and pentagon lattices are complemented, but not distributive. A totally ordered set is a distributive lattice, but not complemented if the order of it is greater than 2 . Generally speaking, the complements of an element are not unique if they exist. For instance, for the rhombus lattice in Example 0.2.1, y and z are the complements of x. However, as we have known, for a distributive lattice L with 0 and 1 , the complement of an element a in L must be unique if it exists. We denote a^{\prime} for the only complement of a.

If a lattice is both complemented and distributive, we call it a Boolean algebra, or a Boolean lattice. The symbol B is used to denote such a lattice. As any element a in B has one and only one complement a^{\prime}, there is a unary operation ' on B. Consequently, a Boolean algebra B is actually an algebra $\left(B ; \wedge, \vee,{ }^{\prime}, 0,1\right)$ of type $(2,2,1,0,0)$. Every power set lattice 2^{S} is of course Boolean. Note that a distributive lattice is a set algebra in the sense of isomorphisms. A Boolean algebra is in reality a subalgebra of the algebra $\left(2^{S} ; \cap, \cup,^{\prime}, \varnothing, S\right)$ for some set S, where A^{\prime} is the complementary set of A, i.e., $A^{\prime}=S-A$ for any $A \in 2^{S}$. From this, the following laws are always true in a Boolean algebra:
(1) involution law: $a^{\prime \prime}=a$ where $a^{\prime \prime}=\left(a^{\prime}\right)^{\prime}$;
(2) de Morgan's law: $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$ and $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$.

It has been known that a ring $(R ;+, \cdot, 0)$ means that $(R ;+, 0)$ is an Abelian group and ($R ; \cdot$) is a semigroup (i.e., R is closed under the multiplication and the associative law of multiplication holds) such that the left and right distributive laws of the multiplication to the addition are valid.

A Boolean ring $(B ;+, \cdot, 0,1)$ is a ring with 1 as the unit element such that each element $a \in B$ is idempotent (i.e., $a^{2}=a$). For a Boolean ring B we have the following facts:
(1) B is of characteristic $2: a+a=0$ for all $a \in B$;
(2) the multiplication satisfies the commutative law: $a b=b a$;
(3) every element in $B-\{0,1\}$ is a zero divisor: for any $a \in B-\{0,1\}$, there is a nonzero element $b \in B$ (e.g., $b=1+a$) such that $a b=0$.

Let $\left(B ; \wedge, \vee,^{\prime}, 0,1\right)$ be a Boolean algebra. Define two binary operations + and \cdot on B by

$$
a+b=\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right) \text { and } a \cdot b=a \wedge b
$$

Then $(B ;+, \cdot, 0,1)$ is a Boolean ring (here, the verification is routine and omitted, the same below). For this ring, letting

$$
a \sqcap b=a b, a \sqcup b=a+b+a b \text { and } a^{*}=1+a,
$$

we also have a Boolean algebra $\left(B ; \sqcap, \sqcup,{ }^{*}, 0,1\right)$. It is interesting that we have the following facts:

$$
a \sqcap b=a \wedge b, a \sqcup b=a \vee b \text { and } a^{*}=a^{\prime},
$$

in other words, $\left(B ; \sqcap, \sqcup,{ }^{*}, 0,1\right)$ is just the original algebra. Next, if we begin with a Boolean ring $(B ;+, \cdot, 0,1)$, we can induce a Boolean algebra $\left(B ; \wedge, \vee,{ }^{\prime}, 0,1\right)$ where

$$
a \wedge b=a b, a \vee b=a+b+a b \text { and } a^{\prime}=1+a
$$

And then we can also induce a Boolean ring $(B ; \oplus, \odot, 0,1)$ where

$$
a \oplus b=\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right) \text { and } a \odot b=a \wedge b
$$

It is also interesting that $(B ; \oplus, \odot, 0,1)$ is just the original ring. These analyses show that the process of passing from a Boolean algebra to a Boolean ring and the process of passing from a Boolean ring to a Boolean algebra are inverses. We state these phenomena as the following theorem.

Theorem 0.2.3. Boolean algebra and Boolean ring are two types of equivalent abstract systems.

Finally, we state several terminologies as follows. Let L be a lattice. An ideal I of L means that I is a nonempty subset of L, satisfying the following conditions: for any $a, b, c \in L$,
(1) $a \in I$ and $b \in I$ imply $a \vee b \in I$;
(2) $a \in I$ and $c \leqslant a$ imply $c \in I$.

Dually, a filter or a dual ideal F of L is a nonempty subset of L, satisfying
(1) $a \in F$ and $b \in F$ imply $a \wedge b \in F$;
(2) $a \in F$ and $c \geqslant a$ imply $c \in F$.

Given an element $u \in L$, the set $(u]=\{a \in L \mid a \leqslant u\}$ is an ideal of L. Dually, the set $[u)=\{a \in L \mid a \geqslant u\}$ is a filter of L. It is easy to see that an ideal I of L is a sublattice of L, so is a filter F of L.

A mapping f from a lattice $(L ; \wedge, \vee)$ to another lattice $\left(L^{\prime} ; \wedge^{\prime}, \vee^{\prime}\right)$ is called a homomorphism if for all $a, b \in L$,
(1) $f(a \wedge b)=f(a) \wedge^{\prime} f(b)$;
(2) $f(a \vee b)=f(a) \vee^{\prime} f(b)$.

Every lattice homomorphism $f: L \rightarrow L^{\prime}$ is isotonic in the sense that

$$
a \leqslant b \text { implies } f(a) \leqslant^{\prime} f(b) \text { for any } a, b \in L
$$

Thus the set $I=\{a \in L \mid f(a)=f(0)\}$ is an ideal of L if L contains the zero element 0 . And the set $F=\{a \in L \mid f(a)=f(1)\}$ is a filter of L if L contains the unit element 1.

Chapter 1

General Theory

This chapter is an introduction to the general theory of BCI-algebras. We will first give the notions of BCI-algebras, BCK-algebras, p-semisimple algebras, and investigate their elementary and fundamental properties, and then deal with a number of basic concepts, such as ideals, congruences, quotient algebras, BCI-homomorphisms, direct sums and direct products. It is worth pointing out that there are some unusual phenomena in BCI-algebras, for example, an ideal may not be a subalgebra, the quotient algebra by a congruence may not be a BCI-algebra, nor is the image of an ordinary algebraic homomorphism, etc.

§1.1 Definition and Elementary Properties

There are several axiom systems for BCI-algebras. In this book we will adopt the following axiom system which was discovered by H. S. Li in 1985.

Definition 1.1.1. An algebra $(X ; *, 0)$ of type $(2,0)$ is called a BCIalgebra if it satisfies the following conditions: for any $x, y, z \in X$,

BCI-1: $((x * y) *(x * z)) *(z * y)=0$;
BCI-2: $x * 0=x$;
BCI-3: $x * y=0$ and $y * x=0$ imply $x=y$.
We call the binary operation $*$ on X the $*$ multiplication on X, and the constant 0 of X the zero element of X. We often write X instead of $(X ; *, 0)$ for a BCI-algebra in brevity.

Let's first give several examples of BCI-algebras.
Example 1.1.1. Let S be a set. Denote 2^{S} for the power set of S in the sense that 2^{S} is the collection of all subsets of $S,-$ for the set difference and \varnothing for the empty set. Then $\left(2^{S} ;-, \varnothing\right)$ is a BCI-algebra. In fact, for any $A, B, C \in 2^{S}$, since $(A-B)-(A-C) \subseteq C-B$, we have

$$
((A-B)-(A-C))-(C-B)=\varnothing
$$

BCI-1 holding. Obviously, $A-\varnothing=A$, which is just BCI-2. If $A-B=\varnothing$ and $B-A=\varnothing$, then $A \subseteq B$ and $B \subseteq A$, and so $A=B$, proving BCI-3, as asserted.

Example 1.1.2. Suppose that $(G ; \cdot, e)$ is an Abelian group with e as the unit element. Define a binary operation $*$ on X by putting $x * y=x y^{-1}$. Then $(G ; *, e)$ is a BCI-algebra. In fact, for any $x, y, z \in X$, we have

$$
\begin{aligned}
((x * y) *(x * z)) *(z * y) & =\left(\left(x y^{-1}\right)\left(x z^{-1}\right)^{-1}\right)\left(z y^{-1}\right)^{-1} \\
& =x y^{-1} \cdot x^{-1} z \cdot z^{-1} y=e
\end{aligned}
$$

BCI-1 holding. Also, since $x * e=x e^{-1}=x$, BCI-2 is valid. Moreover, if $x * y=e$, then $x y^{-1}=e$, that is, $x=y$. Now, it is easily seen that BCI-3 is true.

We call $(G ; *, e)$ in the above example the adjoint BCI-algebra of the Abelian group ($G ; \cdot, e$).

Example 1.1.3. Assume that $(X ; \leqslant)$ is a partially ordered set with the least element 0 . Define an operation $*$ on X by

$$
x * y= \begin{cases}0 & \text { if } x \leqslant y \\ x & \text { if } x \neq y\end{cases}
$$

Then $(X ; *, 0)$ is a BCI-algebra. In fact, it is clear that BCI-2 and BCI-3 hold. It remains to verify BCI-1. Put $x, y, z \in X$. If $x \leqslant y$, then

$$
((x * y) *(x * z)) *(z * y)=(0 *(x * z)) *(z * y)=0 *(z * y)=0
$$

If $x \nless y$ and $x \nless z$, then

$$
((x * y) *(x * z)) *(z * y)=(x * x) *(z * y)=0 *(z * y)=0
$$

If $x \nless y$ and $x \leqslant z$, it is easy to verify from the transitivity of the partial ordering \leqslant that $z \notin y$. Also, since 0 is the least element of X, by $x \notin y$, we have $x \neq 0$, thus $x \nless 0$. Therefore

$$
((x * y) *(x * z)) *(z * y)=(x * 0) * z=x * z=0
$$

Summarizing the above arguments, BCI-1 holds.
Example 1.1.4. Let $X=\{0,1, a\}$. Define a binary operation $*$ on X by the following $*$ multiplication table:

$*$	0	1	a
0	0	0	a
1	1	0	a
a	a	a	0

It is not difficult to verify that $(X ; *, 0)$ is a BCI-algebra.

The next example points out that our axiom system is independent.
Example 1.1.5. Suppose that X is the set $\{0,1, a\}$. Define three binary operations $*, *^{\prime}$ and $*^{\prime \prime}$ on X by the following Cayley tables respectively:

$*$	0	1	a
0	0	0	a
1	1	0	0
a	a	a	0

$*^{\prime}$	0	1	a
0	0	0	0
1	a	a	0
a	a	a	0

$*^{\prime \prime}$	0	1	a
0	0	0	0
1	1	0	0
a	a	0	0

It is easily seen from the first table that $(X ; *, 0)$ satisfies BCI-2 and BCI-3, but it does not satisfy BCI-1 because

$$
((1 * a) *(1 * 0)) *(0 * a)=(0 * 1) * a=0 * a=a \neq 0
$$

From the second table, routine verification gives that $\left(X ; *^{\prime}, 0\right)$ satisfies BCI- 1 and BCI-3, but it does not satisfy BCI-2, for $1 *^{\prime} 0=a \neq 1$. As for the third table, it is not difficult to verify that $\left(X ; *^{\prime \prime}, 0\right)$ meets BCI-1 and BCI-2, however, it does not meet BCI-3 since $1 *^{\prime \prime} a=0$ and $a *^{\prime \prime} 1=0$, but $1 \neq a$.

We now investigate a number of elementary and fundamental properties of BCI-algebras. There are other axiom systems for BCI-algebras. Here we will give one of them.

Theorem 1.1.1. An algebra $(X ; *, 0)$ of type $(2,0)$ is a BCI-algebra if and only if it satisfies the following conditions: for all $x, y, z \in X$,
(1) BCI-1: $((x * y) *(x * z)) *(z * y)=0$;
(2) $(x *(x * y)) * y=0$;
(3) $x * x=0$;
(4) BCI-3: $x * y=0$ and $y * x=0$ imply $x=y$.

Proof. Necessity. It suffices to prove (2) and (3). By BCI-2 and BCI-1,

$$
(x *(x * y)) * y=((x * 0) *(x * y)) *(y * 0)=0
$$

(2) holding. By the same reasons,

$$
x * x=(x * x) * 0=((x * 0) *(x * 0)) *(0 * 0)=0
$$

(3) holding.

Sufficiency. It only needs to show BCI-2. Replacing y by 0 in (2), we get

$$
\begin{equation*}
(x *(x * 0)) * 0=0 \tag{1.1.1}
\end{equation*}
$$

Substituting $x * 0$ for y and x for z in (1), it follows

$$
((x *(x * 0)) *(x * x)) *(x *(x * 0))=0 .
$$

Using (3), the last identity becomes

$$
\begin{equation*}
((x *(x * 0)) * 0) *(x *(x * 0))=0 \tag{1.1.2}
\end{equation*}
$$

An application of (1.1.1) to (1.1.2) gives

$$
\begin{equation*}
0 *(x *(x * 0))=0 . \tag{1.1.3}
\end{equation*}
$$

Comparing (1.1.1) with (1.1.3) and using (4), we obtain

$$
\begin{equation*}
x *(x * 0)=0 \tag{1.1.4}
\end{equation*}
$$

Also, by (3) and (2), the following holds:

$$
\begin{equation*}
(x * 0) * x=(x *(x * x)) * x=0 . \tag{1.1.5}
\end{equation*}
$$

Now, combining (1.1.4) with (1.1.5) and using (4) once again, it yields $x * 0=x$, showing BCI-2.

BCI-algebras are essentially a class of ordered algebras in the following point of view.

Proposition 1.1.2. Suppose that $(X ; *, 0)$ is a BCI-algebra. Define a binary relation \leqslant on X by which $x \leqslant y$ if and only if $x * y=0$ for any $x, y \in X$. Then $(X ; \leqslant)$ is a partially ordered set with 0 as a minimal element in the meaning that $x \leqslant 0$ implies $x=0$ for any $x \in X$.

Proof. For any $x, y, z \in X$, by Theorem 1.1.1(3), we have $x * x=0$, then $x \leqslant x$, which is just the reflexivity. If $x \leqslant y$ and $y \leqslant x$, then $x * y=0$ and $y * x=0$, and so $x=y$ by BCI-3, proving the anti-symmetry. If $x \leqslant y$ and $y \leqslant z$, then $x * y=0$ and $y * z=0$, and so BCI-2 and BCI- 1 together give

$$
x * z=((x * z) * 0) * 0=((x * z) *(x * y)) *(y * z)=0
$$

hence $x \leqslant z$ and the transitivity is true. We have shown that \leqslant is a partial ordering on X. Therefore $(X ; \leqslant)$ is a partially ordered set. Finally, if $x \leqslant 0$, then $x * 0=0$. Also, by BCI- $2, x * 0=x$. Hence $x=0$ and 0 is a minimal element of X.

We often call the partial ordering \leqslant defined in Proposition 1.1.2 the BCIordering on X. From now on, the symbol \leqslant will be used to denote the BCI-ordering, unless specified otherwise.

Theorem 1.1.3. An algebra $(X ; *, 0)$ of type $(2,0)$ is a BCI-algebra if and only if there is a partial ordering \leqslant on X such that the following conditions hold: for any $x, y, z \in X$,
(1) $(x * y) *(x * z) \leqslant z * y$;
(2) $x *(x * y) \leqslant y$;
(3) $x * y=0$ if and only if $x \leqslant y$.

Proof. Assume that $(X ; *, 0)$ is a BCI-algebra, then the BCI-ordering \leqslant is a partial ordering on X. By our definition of $\leqslant,(3)$ is valid. Also, BCI-1 and (3) imply (1); Theorem 1.1.1(2) and (3) imply (2).

Conversely, assume that \leqslant is a partial ordering on X, satisfying (1), (2) and (3). Because of (3), (1) is equivalent to BCI-1, and (2) to

$$
(x *(x * y)) * y=0
$$

Also, by the reflexivity of \leqslant, we have $x \leqslant x$, then (3) implies $x * x=0$. Moreover, if $x * y=0$ and $y * x=0$, then $x \leqslant y$ and $y \leqslant x$ by (3), and so the anti-symmetry of \leqslant gives $x=y$. Therefore $(X ; *, 0)$ is a BCI-algebra by Theorem 1.1.1.

The next proposition will be used frequently, whose proof is not difficult and left to the reader.

Proposition 1.1.4. Let x, y, z be any elements in a BCI-algebra X. Then
(1) $x \leqslant y$ implies $z * y \leqslant z * x$;
(2) $x \leqslant y$ implies $x * z \leqslant y * z$.

Theorem 1.1.5. Given a BCI-algebra X, the following identity holds:

$$
(x * y) * z=(x * z) * y .
$$

Proof. By Theorem 1.1.3(2), $x *(x * z) \leqslant z$, then Proposition 1.1.4(1) implies

$$
(x * y) * z \leqslant(x * y) *(x *(x * z))
$$

Also, substituting $x * z$ for z in the inequality of Theorem 1.1.3(1), we have

$$
(x * y) *(x *(x * z)) \leqslant(x * z) * y
$$

Then the transitivity of \leqslant gives

$$
(x * y) * z \leqslant(x * z) * y \text { for any } x, y, z \in X
$$

Replacing y by z and z by y in the last inequality, we obtain

$$
(x * z) * y \leqslant(x * y) * z .
$$

Hence the anti-symmetry of \leqslant implies that $(x * y) * z=(x * z) * y$.
Theorem 1.1.5 gives a nice property that all elements except the first one in the expression $(x * y) * z$ can exchange their places. For convenience, we call it the head-fixed commutative law. The following is an immediate corollary of the head-fixed commutative law.

Corollary 1.1.6. Let x, y, z be three elements of a BCI-algebra X. Then
(1) $x * y \leqslant z$ if and only if $x * z \leqslant y$, in particular, $x * y=z$ implies $x * z \leqslant y ;$
(2) $(x * z) *(y * z) \leqslant x * y$.

Repeatedly applying the head-fixed commutative law, we will also obtain the following corollary.

Corollary 1.1.7. Let x and $a_{i}(i=1,2, \cdots, n)$ be any elements in a BCI-algebra X. Then

$$
\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=\left(\cdots\left(\left(x * a_{i_{1}}\right) * a_{i_{2}}\right) * \cdots\right) * a_{i_{n}}
$$

where $i_{1} i_{2} \cdots i_{n}$ is a permutation of $1,2, \cdots, n$.
Theorem 1.1.8. Given a BCI-algebra X, the following identities hold:
(1) $x *(x *(x * y))=x * y$;
(2) $0 *(x * y)=(0 * x) *(0 * y)$.

Proof. (1) By Theorems 1.1.3(1) and 1.1.1(2), we obtain

$$
(x * y) *(x *(x *(x * y))) \leqslant(x *(x * y)) * y=0 .
$$

Since 0 is a minimal element of X, it follows

$$
(x * y) *(x *(x *(x * y)))=0
$$

Also, by Theorem 1.1.1(2), we have

$$
(x *(x *(x * y))) *(x * y)=0
$$

Therefore $x *(x *(x * y))=x * y$ by BCI-3.
(2) By Theorem 1.1.1(3) and Corollary 1.1.7, it yields

$$
\begin{aligned}
(0 * x) *(0 * y) & =(((x * y) *(x * y)) * x) *(0 * y) \\
& =(((x * x) * y) *(0 * y)) *(x * y) \\
& =((0 * y) *(0 * y)) *(x * y) \\
& =0 *(x * y)
\end{aligned}
$$

We call the first property in Theorem 1.1.8 the absorptance of elements and the second the left distributivity of zero.

Throughout this book we will denote N for the set of all nonnegative integers: $0,1,2, \cdots$, and N^{*} for the set of all natural numbers: $1,2,3, \cdots$, and we will also use the following notations in brevity:

$$
\begin{aligned}
& x * y^{0}=x, \\
& x * y^{n}=\underbrace{(\cdots((x * y) * y) * \cdots) * y}_{n \text { times }},
\end{aligned}
$$

where x, y are any elements in a BCI-algebra and $n \in N^{*}$.

Proposition 1.1.9. Let x, y be two elements in a BCI-algebra X. Then
(1) $x *(x *(x * y))^{n}=x * y^{n}$ for any $n \in N$;
(2) $0 *\left(0 * x^{n}\right)=0 *(0 * x)^{n}$ for any $n \in N$.

Proof. (1) We will proceed by induction on n. If $n=0$, then the equality is obviously true. Assume that the equality is valid for $n=k$, that is,

$$
x *(x *(x * y))^{k}=x * y^{k} .
$$

Then Corollary 1.1.7 and the absorptance of elements together give

$$
\begin{aligned}
x *(x *(x * y))^{k+1} & =\left(x *(x *(x * y))^{k}\right) *(x *(x * y)) \\
& =\left(x * y^{k}\right) *(x *(x * y)) \\
& =(x *(x *(x * y))) * y^{k} \\
& =x * y^{k+1} .
\end{aligned}
$$

So, the equality holds for $n=k+1$. Therefore $x *(x *(x * y))^{n}=x * y^{n}$ for any $n \in N$.
(2) There is no harm in assuming $n \geqslant 1$. Repeatedly applying the left distributivity of zero, it follows

$$
\begin{aligned}
0 *\left(0 * x^{n}\right) & =0 *\left(\left(0 * x^{n-1}\right) * x\right) \\
& =\left(0 *\left(0 * x^{n-1}\right)\right) *(0 * x) \\
& =\left(0 *\left(0 * x^{n-2}\right)\right) *(0 * x)^{2} \\
& =\cdots=0 *(0 * x)^{n} .
\end{aligned}
$$

Given an element x in a BCI-algebra X, if it satisfies $0 * x=0$ (that is, $x \geqslant 0$), the element x is called a positive element of X. From our definition, the zero element 0 of X is positive. It is easily seen that the set of all positive elements of the algebra in Example 1.1.4 is $\{0,1\}$.

Proposition 1.1.10. Let X be a BCI-algebra. Then $x *(0 *(0 * x))$ is a positive element of X for every $x \in X$.

Proof. By the left distributivity of zero and the absorptance of elements,

$$
\begin{aligned}
0 *(x *(0 *(0 * x))) & =(0 * x) *(0 *(0 *(0 * x))) \\
& =(0 * x) *(0 * x)=0,
\end{aligned}
$$

then $x *(0 *(0 * x))$ is positive.
Minimal elements play an important role in the research of BCI-algebras. An element a in a BCI-algebra X is called minimal if $x * a=0$ (i.e., $x \leqslant a$) implies $x=a$ for any $x \in X$. It is called least if $a * x=0$ (i.e., $a \leqslant x$) for all $x \in X$. Dually, the element a is called maximal if $a * x=0$ (i.e.,
$a \leqslant x$) implies $a=x$ for any $x \in X$. It is called greatest if $x * a=0$ (i.e., $x \leqslant a$) for all $x \in X$. From our definitions, the zero element 0 of X is minimal, and the least element must be 0 if it exists. Also, the set of all minimal elements and the set of all maximal elements of the algebra in Example 1.1.4 are respectively $\{0, a\}$ and $\{1, a\}$.

Proposition 1.1.11. Assume that a is an element in a BCI-algebra X. Then the following conditions are equivalent:
(1) a is minimal;
(2) $0 *(0 * a)=a$;
(3) there is $x \in X$ such that $a=0 * x$.

Proof. (1) $\Longrightarrow(2)$. By Theorem 1.1.1, $(0 *(0 * a)) * a=0$. Since a is minimal, it follows $0 *(0 * a)=a$.
$(2) \Longrightarrow(3)$. By $(2), a=0 *(0 * a)=0 * x$ where $x=0 * a$.
$(3) \Longrightarrow(1)$. Suppose that $a=0 * x$ for some $x \in X$. For every $y \in X$, if $y * a=0$, then $y *(0 * x)=0$. By the absorptance and head-fixed commutative law, we have

$$
a * y=(0 * x) * y=(0 *(0 *(0 * x))) * y=(0 * y) *(0 *(0 * x))
$$

Using the left distributivity of zero, we also have

$$
(0 * y) *(0 *(0 * x))=0 *(y *(0 * x))=0 * 0=0
$$

Hence $a * y=0$. In addition, $y * a=0$. It follows $y=a$ by BCI-3. Thus a is a minimal element of X.

Finally let's consider the notion of subalgebras.
Definition 1.1.2. Let $(X ; *, 0)$ be a BCI-algebra. A subset Y of X is called a subalgebra of X if the constant 0 of X is in Y, and $(Y ; *, 0)$ itself forms a BCI-algebra.

The following is a criterion of subalgebras, whose proof is easy and left to the reader.

Proposition 1.1.12. A non-vacuous subset Y of a BCI-algebra X is a subalgebra of X if and only if Y is closed under the $*$ multiplication on X (i.e., $x \in Y$ and $y \in Y$ imply $x * y \in Y$ for any $x, y \in X$).
X and $\{0\}$ are obviously two subalgebras of X, which are called, by a joint name, the trivial subalgebras of X. If a subalgebra of X is properly contained in X, it is called a proper subalgebra of X. Thus $\{0\}$ is a proper subalgebra of X whenever $X \neq\{0\}$.

In Example 1.1.4, the set of all positive elements and the set of all minimal elements of X are subalgebras of X, but the set of all maximal elements of X is not. In general, we have the following.

Proposition 1.1.13. If X is a $B C I$-algebra, then B and P are subalgebras of X, where B is the set of all positive elements of X, and P the set of all minimal elements of X.

Proof. Since 0 is positive, B is non-vacuous. For any $x, y \in B$, we have $0 * x=0$ and $0 * y=0$, then the left distributivity of zero gives

$$
0 *(x * y)=(0 * x) *(0 * y)=0 * 0=0
$$

Hence $x * y \in B$. Therefore B is a subalgebra of X by Proposition 1.1.12.
Next, since 0 is minimal, P is nonempty. For any $a, b \in P$, if $x \leqslant a * b$, then Proposition 1.1.4(2) and the head-fixed commutative law give

$$
x * a \leqslant(a * b) * a=(a * a) * b=0 * b,
$$

thus $x *(0 * b) \leqslant a$ by Corollary 1.1.6(1). As a is a minimal element of X, we obtain $x *(0 * b)=a$. Now, by the head-fixed commutative law and Theorem 1.1.3,

$$
a * x=(x *(0 * b)) * x=(x * x) *(0 * b)=0 *(0 * b) \leqslant b
$$

Then Corollary 1.1.6 implies that $a * b \leqslant x$. In addition, $x \leqslant a * b$. Hence $x=a * b$. We have then shown that $a * b$ is a minimal element of X. Thus $a * b \in P$. Therefore P is a subalgebra of X by Proposition 1.1.12.

At the end of the first section we recall our recognition: BCI-algebras are a class of ordered algebras with the head-fixed commutative law and absorptance mentioned above, not satisfying the commutative law and associative law, having close contacts with the theories of lattices and groups. Without doubt, BCI-algebras are a class of universal algebras.

Exercises

1.1.1. Verify that the algebra X in Example 1.1 .4 and the algebra I_{4-2-2} in Appendix B are BCI-algebras.
1.1.2. Show that an algebra $(X ; *, 0)$ of type $(2,0)$ is a BCI-algebra if and only if it satisfies the following conditions: for any $x, y, z \in X$,
B: $((x * y) *(z * y)) *(x * z)=0$;
$\mathrm{C}:((x * y) * z) *((x * z) * y)=0$;
I: $\quad x * x=0$;
BCI-3: $x * y=0$ and $y * x=0$ imply $x=y$.
[Remark. The conditions B, C and I correspond to the combinators B, C
and I in combinatory logic, and the name of BCI-algebras is taken from BCI-system.]
1.1.3. Give the proof of Proposition 1.1.4.
1.1.4. Let X be a BCI-algebra. Show that for all $x, y, z \in X$ and $n \in N$,
(1) $x * y=x$ implies $x * y^{n}=x$;
(2) $x * y^{n}=x * y^{n+1}$ implies $x * y^{n}=x * y^{m}$ for all $m \geqslant n$;
(3) $x \leqslant y$ implies $x * z^{n} \leqslant y * z^{n}$ and $z * y^{n} \leqslant z * x^{n}$.
1.1.5. Let X be a BCI-algebra. Show that for all $x, y, z, u, v \in X$,
(1) $x \leqslant y$ implies $u *(z * x) \leqslant u *(z * y)$;
(2) $(x *(y * z)) *(x *(y * u)) \leqslant z * u$;
(3) $(x *(y *(z * u))) *(x *(y *(z * v))) \leqslant v * u$;
(4) $\left(x * z^{n}\right) *\left(y * z^{n}\right) \leqslant x * y$ for all $n \in N$.
1.1.6. Let x, y be elements in a BCI-algebra X. Show that the following hold:
(1) $(0 *(x * y)) *(y * x)=0$;
(2) $0 *(x * y)^{n}=\left(0 * x^{n}\right) *\left(0 * y^{n}\right)$ for all $n \in N$;
(3) $\left(x *(x * y)^{n}\right) *(y * x)^{n} \leqslant x$ for all $n \in N$.
1.1.7. Show that there exists one and only one element in a BCI-algebra X such that it is both minimal and positive.
1.1.8. Let a be an element in a BCI-algebra X. Then the following conditions are equivalent:
(1) a is minimal;
(2) $a * x=(0 * x) *(0 * a)$ for any $x \in X$;
(3) $a * x=0 *(x * a)$ for any $x \in X$.
1.1.9. Let X be a BCI-algebra. Show that for any $x, y, z \in X$,
(1) $0 * x$ is a minimal element;
(2) $x \geqslant y$ implies $0 * x=0 * y$;
(3) $0 *(0 *((x * z) *(y * z)))=(0 * y) *(0 * x)$.
1.1.10. Give the proof of Proposition 1.1.12.
1.1.11. If $\left\{X_{i} \mid i \in I\right\}$ is the family consisting of certain subalgebras of a BCIalgebra X, then the intersection $\bigcap_{i \in I} X_{i}$ is a subalgebra of X.
1.1.12. Let X be a BCI-algebra. Denote $Y=\left\{x \in X \mid 0 * x^{n}=0\right\}$ in which n is a natural number. Show that Y is a subalgebra of X.
1.1.13. Let X_{1}, X_{2} be subalgebras of a BCI-algebra X such that $X_{1} \nsubseteq X_{2}$ and $X_{2} \not \subset X_{1}$. May the union $X_{1} \cup X_{2}$ form a subalgebra of X ?
1.1.14. Let $(G ; *, e)$ be the adjoint BCI-algebra of an Abelian group $(G ; \cdot, e)$ and let H be a non-vacuous subset of G. Show that H is a subgroup of $(G ; \cdot, e)$ if and only if it is a subalgebra of $(G ; *, e)$.
1.1.15. Let u be an element in a BCI-algebra X. Denote $u * X=\{u * x \mid x \in X\}$ and $X * u=\{x * u \mid x \in X\}$. Show that
(1) $u * X=\{x \in X \mid u *(u * x)=x\}$;
(2) $u *(u * X)=u * X$;
(3) $v \in u * X$ implies $v * X \subseteq u * X$;
(4) every minimal element a of X is in both $u * X$ and $X * u$;
(5) $u * X$ and $X * u$ are subalgebras of X.
[Remark. By virtue of (4) and (5), if Y is the set consisting of the whole elements in a row or in a column in the $*$ multiplication table of X, then Y is a subalgebra of X, containing all minimal elements of X.]
1.1.16. Let I_{5-3-10} be as in Appendix B. Write down all subalgebras of it.
1.1.17. Let a, b be two elements in a BCI-algebra X. Show that if there is $x \in X$ such that $x \leqslant a$ and $x \leqslant b$, then $a * b$ is a positive element of X.
1.1.18. Let X be a finite BCI-algebra of order n. Show that all of the elements in X can be written as a sequence $a_{0}, a_{1}, \cdots, a_{n-1}$ such that a_{r} is a maximal element of the set $\left\{a_{0}, a_{1}, \cdots, a_{r}\right\}$ where $0 \leqslant r \leqslant n-1$, thus $a_{i} * a_{j} \neq 0$ whenever $i>j$.
[Remark. Such a sequence is called a standard sequence of X. In the * multiplication table which is made from a standard sequence, every element under the main diagonal is nonzero.]
1.1.19. Let X be a BCI-algebra. Show that if the zero element 0 of X is maximal, then every element of X is minimal. Show that if the greatest element of X exists, then every element of X is positive.

§1.2 BCK-Algebras

BCK-algebras are a special class of BCI-algebras, which play an important role in the theory of BCI-algebras and have close contacts with lattice theory. Historically, BCK-algebras were raised earlier than BCI-algebras. In this section we will also consider the notions and elementary properties of bounded BCK-algebras and involutory BCK-algebras.

Definition 1.2.1. Given a BCI-algebra X, if it satisfies the condition
BCK-1: $0 * x=0$ for all $x \in X$ (i.e., every element $x \in X$ is positive), we call the algebra a BCK-algebra.

It is obvious that if X is a BCK-algebra, then 0 is the only minimal element of X, in other words, 0 is the least element of X. It is also obvious that if Y is a subalgebra of a BCK-algebra, then Y itself is a BCK-algebra too. The algebras in Examples 1.1.1 and 1.1.3 are BCK-algebras. Let's consider some further examples of BCK-algebras.

Example 1.2.1. The set N of nonnegative integers, together with the binary operation $*$ on X defined by $x * y=\max \{0, x-y\}$, forms a BCKalgebra, where the operation - is the subtraction as usual. In fact, it is easy to verify from our definition of $*$ that BCI-2, BCI-3 and BCK-1 are true. In order to verify BCI-1, we first note that the operation $*$ can be rewritten as $x * y=0$ if $x \leqslant y$ and $x * y=x-y$ if $x>y$. The verification is as follows.
(1) If $x \leqslant y$, then

$$
((x * y) *(x * z)) *(z * y)=(0 *(x * z)) *(z * y)=0 *(z * y)=0
$$

(2) If $y<x \leqslant z$, then $x-y \leqslant z-y$, and so

$$
((x * y) *(x * z)) *(z * y)=((x-y) * 0) *(z-y)=0 .
$$

(3) If $y<x$ and $z \leqslant y$, then $x-y \leqslant x-z$, and so

$$
((x * y) *(x * z)) *(z * y)=((x-y) *(x-z)) * 0=0 .
$$

(4) If $y<z<x$, then $x-z<x-y$, and so

$$
\begin{aligned}
((x * y) *(x * z)) *(z * y) & =((x-y) *(x-z)) *(z-y) \\
& =((x-y)-(x-z)) *(z-y) \\
& =(z-y) *(z-y)=0 .
\end{aligned}
$$

Summarizing the above arguments, BCI-1 holds. Therefore $(N ; *, 0)$ is a BCK-algebra.

Example 1.2.2. Let A be the set $\left\{a_{n} \mid n \in N\right\}$ with $N \cap A=\varnothing$. Denote $X=N \cup A$. Define a binary operation $*$ on X as follows: for all $m, n \in N$,

$$
\begin{aligned}
& m * n=\max \{0, m-n\}, \\
& m * a_{n}=0, \\
& a_{m} * n=a_{m+n}, \\
& a_{m} * a_{n}=n * m .
\end{aligned}
$$

Then $(X ; *, 0)$ is a BCK-algebra with the BCI-ordering

$$
0 \leqslant 1 \leqslant 2 \leqslant \cdots \leqslant a_{2} \leqslant a_{1} \leqslant a_{0}
$$

In fact, BCK-1, BCI-2 and BCI-3 are obviously true, and $(N ; *, 0)$ is a BCK-algebra by Example 1.2.1. In order to verify BCI-1, we denote

$$
(x y z)=((x * y) *(x * z)) *(z * y)
$$

and let $m, n, p \in N$. It is easy to see from our definition of $*$ that

$$
\begin{align*}
\left(a_{m} * n\right) *\left(a_{m} * p\right) & =p * n, \tag{1.2.1}\\
\left(\left(a_{m} * n\right) * t\right) *\left(a_{p} * n\right) & =p *(m+t) \text { for all } t \in N . \tag{1.2.2}
\end{align*}
$$

Now we are ready to verify BCI- 1 .
(1) If $x=m, y=n$ and $z=p$, since N is a BCK-algebra, $(x y z)=0$.
(2) If $x=m, y=n$ and $z=a_{p}$, since $(m * n) * 0=m * n \in N$, we obtain

$$
\begin{aligned}
(x y z) & =\left((m * n) *\left(m * a_{p}\right)\right) *\left(a_{p} * n\right) \\
& =((m * n) * 0) * a_{p+n}=0 .
\end{aligned}
$$

(3) If $x=m$ and $y=a_{n}$, then $(x y z)=0$ by BCK-1.
(4) If $x=a_{m}, y=n$ and $z=p$, then (1.2.1) implies

$$
\begin{aligned}
(x y z) & =\left(\left(a_{m} * n\right) *\left(a_{m} * p\right)\right) *(p * n) \\
& =(p * n) *(p * n)=0 .
\end{aligned}
$$

(5) If $x=a_{m}, y=n$ and $z=a_{p}$, since $a_{m} * a_{p}=p * m \in N,(1.2 .2)$ gives

$$
\begin{aligned}
(x y z) & =\left(\left(a_{m} * n\right) *\left(a_{m} * a_{p}\right)\right) *\left(a_{p} * n\right) \\
& =p *(m+(p * m)) \\
& =\max \{0, p-m-\max \{0, p-m\}\}=0
\end{aligned}
$$

(6) If $x=a_{m}, y=a_{n}$ and $z=p$, then

$$
\begin{aligned}
(x y z) & =\left(\left(a_{m} * a_{n}\right) *\left(a_{m} * p\right)\right) *\left(p * a_{n}\right) \\
& =\left((n * m) * a_{m+p}\right) * 0=0 * 0=0 .
\end{aligned}
$$

(7) If $x=a_{m}, y=a_{n}$ and $z=a_{p}$, since $(N ; *, 0)$ is a BCK-algebra,

$$
\begin{aligned}
(x y z) & =\left(\left(a_{m} * a_{n}\right) *\left(a_{m} * a_{p}\right)\right) *\left(a_{p} * a_{n}\right) \\
& =((n * m) *(p * m)) *(n * p) \\
& =((n * m) *(n * p)) *(p * m)=0 .
\end{aligned}
$$

Summing up the above arguments, BCI-1 is valid. Therefore $(X ; *, 0)$ is a BCK-algebra. Finally, note that $m * n=0$ iff $m \leqslant n$ and $a_{m} * a_{n}=0$ iff $n \leqslant m$ as well as $m * a_{n}=0$. The BCI-ordering on X is

$$
0 \leqslant 1 \leqslant 2 \leqslant \cdots \leqslant a_{2} \leqslant a_{1} \leqslant a_{0}
$$

The next example is famous, which was given by A. Wroński in 1983. For convenience, we call such BCK-algebra the Wroński's algebra.

Example 1.2.3. For the Wroński's algebra $(X ; *, 0)$, the underlying set $X=N \cup A \cup B$ in which $A=\left\{a_{n} \mid n \in N\right\}$ and $B=\left\{b_{n} \mid n \in N\right\}$ and each pair of the sets N, A, B is disjoint. And the $*$ multiplication on X is defined as follows (here, the figure describes the Hasse diagram of X): for any $m, n \in N$,

$$
\begin{aligned}
& m * n=\max \{0, m-n\} \\
& m * a_{n}=m * b_{n}=0 \\
& a_{m} * n=a_{m+n} \\
& b_{m} * n=b_{m+n} \\
& a_{m} * a_{n}=b_{m} * b_{n}=n * m, \\
& a_{m} * b_{n}=b_{m} * a_{n}=(n+1) * m
\end{aligned}
$$

