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Preface

This book is mainly designed for the graduate students who are in-

terested in the theory of BCK and BCI-algebras.

BCI-algebras are a wider class than BCK-algebras, introduced by

Kiyoshi Iséki in 1966. BCI-algebras as a class of logical algebras are

the algebraic formulations of the set difference together with its pro-

perties in set theory and the implicational functor in logical systems.

They are closely related to partially ordered commutative monoids

as well as various logical algebras. Their names are originated from

the combinators B, C, K and I in combinatory logic. The early re-

search work was mainly carried out among the Japanese mathemati-

cians Kiyoshi Iséki and Shotaro Tanaka, etc. who did a great deal of

foundation work. Since late 1970s, their work has been paid much

attention. In particular, the participation in the research of Polish

mathematicians Tadeusz Traczyk and Andrzej Wroński as well as

Australian mathematician William H. Cornish, etc. is making this

branch of algebra develop rapidly. Many interesting and important

results are discovered continuously. Now, the theory of BCI-algebras

has been widely spread.

The structure of this book is similar to that of Two B-Algebras,

the teaching materials by Zhaomu Chen. Some of the contents are

drawn from the following two books: BCK-Algebras by Jie Meng and

Young Bae Jun, and An Introduction to BCI-Algebras by Jie Meng

and Yonglin Liu. Most contents come from firsthand information.

Because Professor Huishi Li’s axiom system is adopted and also be-

cause this book’s system is required, many proofs are properly modi-

fied. This book is only an analysis on the general theoretical basis of

BCI-algebras. Therefore the materials are somewhat limited. For ex-

ample, p-semisimple algebras only take a little space, contents on the

topology and category theories and fuzzy BCI-algebras are omitted.

I think, it may be more proper to do so for an elementary book. We

try what we can to use all kinds of notations and terminologies used

by most papers’ authors. More examples are given and the materials
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are handled more systematically and various arguments are written

in more details so as to be read easily. Quite a lot of exercises are

arranged at the end of every section. They are also the component

part of our theory. The exercises with the sign ∗ are more difficult

for the beginners who can leave them away. The two appendices at

the back of the text will be of great value to those who are interested

in further research of BCI-algebras.

For many times the late Professor Zhaomu Chen, my former teacher,

encouraged me to compile this book. Professors Jie Meng, Hao

Jiang, Young Bae Jun, Yonglin Liu and Doctor Eun Hwan Roh pro-

vided much valuable information. Professor Hao Jiang went over the

manuscript and pointed out some mistakes. Miss Liying Chen in

Longyan Teachers’ College provided me much help in English expres-

sion. Mr Shenrong Lu in Longyan Teachers’ College gave me much

guidance in using computer. Mr Wenqing Zhang in Sanming College

read through all pages and corrected some spelling and grammatical

mistakes. Sanming College that I am working in now offers financial

aid for publication of the book. Here, I extend my heartfelt thanks

to all those who have supported, helped and encouraged me to write

this book.

Huang Yisheng

Sanming, Fujian

December, 2003
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Chapter 0

Introduction

BCK-algebras and BCI-algebras are abbreviated to two B-algebras. The

former was raised in 1966 by Y. Imai and K. Iséki, Japanese mathematicians,

and the latter was put forward in the same year due to K. Iséki.

Two B-algebras are originated from two different sources. One of the

motivations is based on set theory. In set theory, there are three most

elementary and fundamental operations. They are the union, intersection

and set difference. If we consider those three operations and their properties,

then as a generalization of them, we have the notion of Boolean algebras.

If we take both of the union and intersection, then as a general algebra,

the notion of distributive lattices is obtained. Moreover, if we consider the

union or the intersection alone, we have the notion of upper semilattices or

lower semilattices. However, the set difference together with its properties

had not been considered systematically before K. Iséki.

Another motivation is from propositional calculi. There are some systems

which contain the only implicational functor among logical functors, such

as the system of positive implicational calculus, the system of weak positive

implicational calculus, BCK-system and BCI-system. Undoubtedly there

are common properties among those systems.

We know very well that there are close relationships between the notions

of the set difference in set theory and the implication functor in logical

systems. For example, we have the following simple inclusion relations in

set theory:

(A − B) − (A − C) ⊆ C − B,

A − (A − B) ⊆ B.

These are similar to the propositional formulas in propositional calculi:

(p → q) → ((q → r) → (p → r)),

p → ((p → q) → q).

It raises the following questions. What are the most essential and fun-

damental properties of these relationships? Can we formulate a general

1

wyl
放置的图像



2 Chapter 0 Introduction

algebra from the above consideration? How will we find an axiom system

to establish a good theory of general algebras? Answering these questions,

K. Iséki formulated the notions of two B-algebras in which BCI-algebras are

a wider class than BCK-algebras. Their names are taken from BCK and

BCI-systems in combinatory logic.

§§§0.1 Mappings Abelian Groups Binary Relations

We begin our discussion with a brief survey of some fundamental notions

which will be frequently mentioned.

A mapping f : A → B is a rule of correspondences from a nonempty

set A to another set B, satisfying the condition that for any a ∈ A there

exists a unique element b ∈ B such that a corresponds with b (symbolically,

f(a) = b or f : a 7→ b), where A is called the domain of f , B the codomain

of f , and the set, Im(f) = {f(a) | a ∈ A}, the image of f . Also, we call b

the image of a under f , and a an inverse image of b under f .

In general, an element b in B may have many inverse images, or may not

have any one. If for all b ∈ B there is at least an inverse image of b, i.e.,

Im(f) = B, we call f a surjection. If for any b ∈ Im(f) there is one and

only one inverse image of b, f is called an injection. Of course, a bijection

f : A → B is a mapping which is both surjective and injective.

Denoting a∗ for the image of a under a mapping f : A → B, we can regard

∗ as an operation from A to B. From the above statements of mappings, an

operation ∗ from A to B has to satisfy: ©1 uniqueness: the result a∗ after a

through the operation ∗ is unique; ©2 closeness: a∗ must belong to B. For

example, the power a∗1 = a2 (a ∈ Z) can be regarded as an operation ∗1

from the set Z of all integers to itself, and (a, b)∗2 = | ab | (a, b ∈ Z) as an

operation ∗2 from the Cartesian product set Z × Z to Z, where | • | is the

absolute value of •.

Let A be a nonempty set. An operation ∗ from the Cartesian product set

An to A is called an n-ary operation on A. Especially, a 2-ary operation

is just a binary operation, and a 1-ary operation is a unary operation.

Then the above operation ∗1 is a unary operation on Z, and ∗2 is a binary

operation on Z.

There are some elements in a set, which play special roles. For example, 0

and 1 in Z have respectively the familiar properties: x+0 = x and x ·1 = x

for all x ∈ Z. Such an element is actually a special mapping, and so in our

point of view, it can be regarded as a so-called nullary operation (usually,

it is called a constant).
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A system consisting of a nonempty set A together with some operations

on A and their laws is called an algebra. Those operations on A are usually

described by the type of this algebra. For example, a group (G; ·, e) is an

algebra of type (2, 0). That is to say, this system consists of a nonempty

set G and a binary operation · on G as well as a constant e (i.e., a nullary

operation). Similarly, a ring R is an algebra of type (2, 2, 0), and a field F

is of type (2, 2, 0, 0).

A nonempty subset B of an algebra A, which contains all constants of A

if they exist, is called a subalgebra of A if B is closed under all operations

on A and if all laws in A are still valid in B.

Abelian groups will play a basic role in BCI-algebras. We recall that an

algebra (G; ·, e) of type (2, 0) is said an Abelian group (or a commuta-

tive group) if the following hold:

(1) associative law: (ab)c = a(bc) for any a, b, c ∈ G;

(2) commutative law: ab = ba for any a, b ∈ G;

(3) the unit element of G exists: there is an element e ∈ G such that

ea = a for any a ∈ G;

(4) every element in G is invertible: for any a ∈ G, there exists b ∈ G

such that ab = e.

Several simple examples of Abelian groups are as follows: the additive group

of integers, the additive group of residue classes modulo n, the group of roots

of unity.

We also recall that an algebra (M ; ·, e) of type (2, 0) is called a monoid

if the operation · on M satisfies the associative law and the constant e is a

unit element of M . Any group is obviously a monoid. A sub-semigroup

S of a monoid M means that S is a nonempty subset of M and S is closed

under the operation · on M . A submonoid of M is just a subalgebra of the

monoid M as an algebra. A sub-semigroup is generally not a submonoid,

for example, the set {1, 2, 3, · · · } of natural numbers is a sub-semigroup of

the additive group (Z; +, 0) of integers, but not a submonoid of it.

Because every element a in a group G has its inverse element a−1, we can

induce a binary operation ∗ on G by putting a ∗ b = a · b−1. It is interesting

that if a non-vacuous subset H of G is closed under ∗, it must be a subgroup

of G. However, if H is closed under ·, it may not be a subgroup of G. From

this, we see that the operation ∗ on G is sometimes more effective and useful

than the operation · on G, although ∗ does not satisfy the associative and

commutative laws.
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Binary relations are a generalization of the notion of mappings. Roughly

speaking, a binary relation is an assertion determining the correctness be-

tween two objects. We now describe this notion. Let A, B be two non-

vacuous sets and let θ be an assertion between A and B. If each ordered

pair (a, b) of elements a ∈ A and b ∈ B either fits or unfits the assertion

θ, we call θ a binary relation between A and B. Especially, if A = B,

we say the relation θ is on A. We denote a ∼ b (θ) for a and b fitting the

relation θ. In the viewpoint of abstract, a binary relation θ between A and

B can be simply regarded as a subset of A × B. In fact, we first note that

{(a, b) ∈ A × B | a ∼ b (θ)} is evidently a subset of A × B. Next, given a

subset C of A×B, we can provide a binary relation θ between A and B as

follows: a ∼ b (θ) if and only if (a, b) ∈ C.

Equivalence relations are an important class of binary relations. If a

binary relation θ on A satisfies the following: for any a, b, c ∈ A,

(1) reflexivity: a ∼ a (θ);

(2) symmetry: a ∼ b (θ) implies b ∼ a (θ);

(3) transitivity: a ∼ b (θ) and b ∼ c (θ) imply a ∼ c (θ),

then we call it an equivalence relation on A. An interesting example of

such relations is the congruence modulo n in number theory. In this case,

we are used to denote a ∼ b (θ) by a ≡ b (mod n) in the sense that a − b is

a multiple of n.

A partition π of a set A means that π is a collection of non-vacuous

subsets of A such that the union of all members in π is the whole of A

and distinct members in π are disjoint. An equivalence relation can be

characterized by a partition. In fact, if θ is an equivalence relation on A,

then the quotient set π = {a | a ∈ A} determines a partition of A, where a

is the set {x ∈ A | x ∼ a (θ)}, called the equivalence class containing the

element a. Conversely, if π is a partition of A, then the following relation

θ on A is an equivalence relation: a ∼ b (θ) if and only if a, b ∈ C for some

C ∈ π.

Another important class of binary relations is partial orderings. For such

a relation θ, the symbol a ∼ b (θ) is usually written as a 6 b. A binary

relation 6 on a set A is called a partial ordering if the following hold: for

any a, b, c ∈ A,

(1) reflexivity: a 6 a;

(2) anti-symmetry: a 6 b and b 6 a imply a = b;

(3) transitivity: a 6 b and b 6 c imply a 6 c.
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A typical example of partial orderings is the inclusion relation ⊆ of sets. If

6 is a partial ordering on A, the system (A; 6) is said a partially ordered

set. If we do have either a 6 b or b 6 a for any a, b ∈ A, we call such a

partially ordered set (A; 6) a totally ordered set. Sometimes, we denote

a 6 b and a 6= b by a < b. And we write a > b as an alternative for b 6 a

and a > b for b < a.

§§§0.2 Lattices Boolean Algebras

Given two elements a and b in a partially ordered set (L; 6), an element u

in L is said a lower bound of a and b if u 6 a and u 6 b. The element u is

said a greatest lower bound of a and b if ©1 u is a lower bound of a and

b; ©2 v 6 u for every lower bound v of a and b. The greatest lower bound

is clearly unique if it exists. In a similar fashion we can define an upper

bound and the least upper bound of a and b. The greatest lower bound

is often abbreviated to g.l.b., and the least upper bound to l.u.b. There

are some partially ordered sets, each of which has the greatest element or

the least element. Sometimes, we denote them by 1 and 0, called the unit

element and the zero element respectively.

A partially ordered set (L; 6) is called a lower semilattice if any two

elements in L have the greatest lower bound of them. It is called an upper

semilattice if each pair of elements in L has its least upper bound. If

(L; 6) is both a lower semilattice and an upper semilattice, we call it a

lattice.

Let’s list several examples of lattices as preliminaries. It has been known

that the partial ordering of a partially ordered set of finite order can be

described by a diagram, called a Hasse diagram.

Example 0.2.1. Let L be the set {x, y, z, 0, 1}. Define two partial order-

ings on L by the following Hasse diagrams respectively:

,
,

l
l
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Then L with respect to each of these orderings forms a lattice. We call the

former the rhombus lattice, and the latter the pentagon lattice.

We always denote ⊆ for the inclusion relation of sets in this book. If A

is properly contained in B, we will write it by A ⊂ B.
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Example 0.2.2. (1) (2S ; ⊆) is a lattice, called the power set lattice of

S, where 2S is the power set of a set S (i.e., the collection of all subsets of

S), and g.l.b.{A, B} = A ∩ B, l.u.b.{A, B} = A ∪ B for any A, B ∈ 2S.

(2) (L(V ); ⊆) is a lattice, called the subspace lattice of V , where L(V )

is the collection of the whole subspaces of a vector space V over a field, and

g.l.b.{A, B} = A∩B, l.u.b.{A, B} is the subspace A+B spanned by A and

B.

We are used to denote a ∧ b for g.l.b.{a, b} and a ∨ b for l.u.b.{a, b}. If

(L; 6) is a lower semilattice, then ∧ is a binary operation on L and we can

induce an algebra (L; ∧) of type 2, satisfying the following conditions:

(1) idempotent law: a ∧ a = a;

(2) commutative law: a ∧ b = b ∧ a;

(3) associative law: (a ∧ b) ∧ c = a ∧ (b ∧ c).

The converse is still true. That is because we can induce the following

partial ordering 6 on L such that (L; 6) is a lower semilattice:

a 6 b if and only if a ∧ b = a for all a, b ∈ L.

For the case that (L; 6) is an upper semilattice, there is also a similar

situation. Then, as we have known, we have an alternative definition of

lattices as follows. An algebra (L; ∧, ∨) of type (2, 2) is called a lattice if

the following laws hold:

(L1) idempotent law: a ∧ a = a and a ∨ a = a;

(L2) commutative law: a ∧ b = b ∧ a and a ∨ b = b ∨ a;

(L3) associative law: (a∧ b)∧ c = a∧ (b∧ c) and (a∨ b)∨ c = a∨ (b∨ c);

(L4) absorptive law: a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a.

From our definition of subalgebras, a sublattice M of a lattice (L; ∧, ∨)

means that M 6= ∅ and M is closed under ∧ and ∨ (here, the laws L1 to

L4 are naturally valid in M). Then M with respect to the induced partial

ordering 6 forms a lattice (M ; 6), where a 6 b if and only if a ∧ b = a (or

equivalently, a∨ b = b). It is worth attending that given a nonempty subset

of a lattice (L; 6), it with respect to 6 may form a lattice where 6 is the

partial ordering defined on L, but such a lattice may not be a sublattice of

(L; 6). For instance, the subspace lattice (L(V ); ⊆) of a vector space V is

generally not a sublattice of the power set lattice (2V ; ⊆) of V because the

union A ∪ B of two subspaces A and B need not be a subspace of V . The

occurrence of this phenomenon results from which the partial ordering 6 is

not a binary operation on L.
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A lattice L is called modular if it satisfies the modular law:

a > b implies a ∧ (b ∨ c) = b ∨ (a ∧ c),

or equivalently

a 6 b implies a ∨ (b ∧ c) = b ∧ (a ∨ c).

All of the lattices in Examples 0.2.1 and 0.2.2 are modular except the

pentagon lattice. From lattice theory, a lattice L is modular if and only if

it does not contain any pentagon sublattices of L.

A totally ordered subset of a partially ordered set L is called a chain.

An element a in L is said a cover of another element b in L if a > b and

there does not exist any element x in L such that a > x > b. A connected

chain from a to b is a chain

a = a0 > a1 > a2 > · · · > an = b

such that ai−1 covers ai, i = 1, 2, · · · , n. In this case the number n is

called the length of this chain. The greatest number in the lengths of all

connected chains from a to b is said the length from a to b. If there is

not such a greatest number, we say the length from a to b is infinite. If

L contains the zero element 0, the length from a to 0 is often called the

length of a. A partially ordered set is said to be of finite length if the

lengths of all connected chains are bounded. The following is an interesting

result in lattice theory.

Theorem 0.2.1. Let a, b be elements in a modular lattice L such that

a > b. If L is of finite length, then all connected chains from a to b have

the same length.

A lattice L is called distributive if it satisfies the distributive law:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

or equivalently

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Every totally ordered set is obviously a distributive lattice. In Examples

0.2.1 and 0.2.2, the power set lattice is the only distributive lattice. As

is well known, a distributive lattice must be modular, but the inverse is

false. It is worth pointing out that from lattice theory, a distributive lattice

is in essence a set algebra because it is isomorphic to a sublattice of the

power set lattice 2S of some set S. The following is a useful criterion for

the distributivity of a lattice.

Theorem 0.2.2. A lattice L is distributive if and only if it contains neither

a pentagon sublattice nor a rhombus sublattice.
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Let L be a lattice with the zero element 0 and the unit element 1. Given

a pair of elements a, b in L, if a ∧ b = 0 and a ∨ b = 1, then one of

a and b is called a complement of the other. If every a ∈ L has its

complements, we say L is a complemented lattice. The rhombus and

pentagon lattices are complemented, but not distributive. A totally ordered

set is a distributive lattice, but not complemented if the order of it is greater

than 2. Generally speaking, the complements of an element are not unique

if they exist. For instance, for the rhombus lattice in Example 0.2.1, y and

z are the complements of x. However, as we have known, for a distributive

lattice L with 0 and 1, the complement of an element a in L must be unique

if it exists. We denote a′ for the only complement of a.

If a lattice is both complemented and distributive, we call it a Boolean

algebra, or a Boolean lattice. The symbol B is used to denote such a

lattice. As any element a in B has one and only one complement a′, there is

a unary operation ′ on B. Consequently, a Boolean algebra B is actually an

algebra (B; ∧, ∨, ′, 0, 1) of type (2, 2, 1, 0, 0). Every power set lattice 2S

is of course Boolean. Note that a distributive lattice is a set algebra in the

sense of isomorphisms. A Boolean algebra is in reality a subalgebra of the

algebra (2S ; ∩, ∪, ′, ∅, S) for some set S, where A′ is the complementary

set of A, i.e., A′ = S −A for any A ∈ 2S . From this, the following laws are

always true in a Boolean algebra:

(1) involution law: a′′ = a where a′′ = (a′)′;

(2) de Morgan’s law: (a ∧ b)′ = a′ ∨ b′ and (a ∨ b)′ = a′ ∧ b′.

It has been known that a ring (R; +, ·, 0) means that (R; +, 0) is an

Abelian group and (R; · ) is a semigroup (i.e., R is closed under the multi-

plication and the associative law of multiplication holds) such that the left

and right distributive laws of the multiplication to the addition are valid.

A Boolean ring (B; +, ·, 0, 1) is a ring with 1 as the unit element such

that each element a ∈ B is idempotent (i.e., a2 = a). For a Boolean ring B

we have the following facts:

(1) B is of characteristic 2: a + a = 0 for all a ∈ B;

(2) the multiplication satisfies the commutative law: ab = ba;

(3) every element in B − {0, 1} is a zero divisor: for any a ∈ B − {0, 1},

there is a nonzero element b ∈ B (e.g., b = 1 + a) such that ab = 0.

Let (B; ∧, ∨, ′, 0, 1) be a Boolean algebra. Define two binary operations

+ and · on B by

a + b = (a ∧ b′) ∨ (a′ ∧ b) and a · b = a ∧ b.
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Then (B; +, ·, 0, 1) is a Boolean ring (here, the verification is routine and

omitted, the same below). For this ring, letting

a u b = ab, a t b = a + b + ab and a∗ = 1 + a,

we also have a Boolean algebra (B; u, t, ∗, 0, 1). It is interesting that we

have the following facts:

a u b = a ∧ b, a t b = a ∨ b and a∗ = a′,

in other words, (B; u, t, ∗, 0, 1) is just the original algebra. Next, if we

begin with a Boolean ring (B; +, ·, 0, 1), we can induce a Boolean algebra

(B; ∧, ∨, ′, 0, 1) where

a ∧ b = ab, a ∨ b = a + b + ab and a′ = 1 + a.

And then we can also induce a Boolean ring (B; ⊕, �, 0, 1) where

a ⊕ b = (a ∧ b′) ∨ (a′ ∧ b) and a � b = a ∧ b.

It is also interesting that (B; ⊕, �, 0, 1) is just the original ring. These ana-

lyses show that the process of passing from a Boolean algebra to a Boolean

ring and the process of passing from a Boolean ring to a Boolean algebra

are inverses. We state these phenomena as the following theorem.

Theorem 0.2.3. Boolean algebra and Boolean ring are two types of equiv-

alent abstract systems.

Finally, we state several terminologies as follows. Let L be a lattice. An

ideal I of L means that I is a nonempty subset of L, satisfying the following

conditions: for any a, b, c ∈ L,

(1) a ∈ I and b ∈ I imply a ∨ b ∈ I ;

(2) a ∈ I and c 6 a imply c ∈ I .

Dually, a filter or a dual ideal F of L is a nonempty subset of L, satisfying

(1) a ∈ F and b ∈ F imply a ∧ b ∈ F ;

(2) a ∈ F and c > a imply c ∈ F .

Given an element u ∈ L, the set (u ] = {a ∈ L | a 6 u} is an ideal of L.

Dually, the set [ u) = {a ∈ L | a > u} is a filter of L. It is easy to see that

an ideal I of L is a sublattice of L, so is a filter F of L.

A mapping f from a lattice (L; ∧, ∨) to another lattice (L′; ∧′, ∨′) is

called a homomorphism if for all a, b ∈ L,

(1) f(a ∧ b) = f(a) ∧′ f(b);

(2) f(a ∨ b) = f(a) ∨′ f(b).

Every lattice homomorphism f : L → L′ is isotonic in the sense that

a 6 b implies f(a) 6′f(b) for any a, b ∈ L.



10 Chapter 0 Introduction

Thus the set I = {a ∈ L | f(a) = f(0)} is an ideal of L if L contains the

zero element 0. And the set F = {a ∈ L | f(a) = f(1)} is a filter of L if L

contains the unit element 1.



Chapter 1

General Theory

This chapter is an introduction to the general theory of BCI-algebras. We

will first give the notions of BCI-algebras, BCK-algebras, p-semisimple alge-

bras, and investigate their elementary and fundamental properties, and then

deal with a number of basic concepts, such as ideals, congruences, quotient

algebras, BCI-homomorphisms, direct sums and direct products. It is worth

pointing out that there are some unusual phenomena in BCI-algebras, for

example, an ideal may not be a subalgebra, the quotient algebra by a con-

gruence may not be a BCI-algebra, nor is the image of an ordinary algebraic

homomorphism, etc.

§§§1.1 Definition and Elementary Properties

There are several axiom systems for BCI-algebras. In this book we will

adopt the following axiom system which was discovered by H. S. Li in 1985.

Definition 1.1.1. An algebra (X ; ∗, 0) of type (2, 0) is called a BCI-

algebra if it satisfies the following conditions: for any x, y, z ∈ X ,

BCI-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;

BCI-2: x ∗ 0 = x;

BCI-3: x ∗ y = 0 and y ∗ x = 0 imply x = y.

We call the binary operation ∗ on X the ∗ multiplication on X , and

the constant 0 of X the zero element of X . We often write X instead of

(X ; ∗, 0) for a BCI-algebra in brevity.

Let’s first give several examples of BCI-algebras.

Example 1.1.1. Let S be a set. Denote 2S for the power set of S in the

sense that 2S is the collection of all subsets of S, − for the set difference

and ∅ for the empty set. Then (2S ; −, ∅) is a BCI-algebra. In fact, for any

A, B, C ∈ 2S, since (A − B) − (A − C) ⊆ C − B, we have

((A − B) − (A − C)) − (C − B) = ∅,

11
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BCI-1 holding. Obviously, A − ∅ = A, which is just BCI-2. If A − B = ∅

and B −A = ∅, then A ⊆ B and B ⊆ A, and so A = B, proving BCI-3, as

asserted.

Example 1.1.2. Suppose that (G; ·, e) is an Abelian group with e as the

unit element. Define a binary operation ∗ on X by putting x ∗ y = xy−1.

Then (G; ∗, e) is a BCI-algebra. In fact, for any x, y, z ∈ X , we have

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ((xy−1)(xz−1)−1)(zy−1)−1

= xy−1 · x−1z · z−1y = e,

BCI-1 holding. Also, since x ∗ e = xe−1 = x, BCI-2 is valid. Moreover, if

x ∗ y = e, then xy−1 = e, that is, x = y. Now, it is easily seen that BCI-3

is true.

We call (G; ∗, e) in the above example the adjoint BCI-algebra of the

Abelian group (G; ·, e).

Example 1.1.3. Assume that (X ; 6) is a partially ordered set with the

least element 0. Define an operation ∗ on X by

x ∗ y =

{
0 if x 6 y,

x if x 66 y.

Then (X ; ∗, 0) is a BCI-algebra. In fact, it is clear that BCI-2 and BCI-3

hold. It remains to verify BCI-1. Put x, y, z ∈ X . If x 6 y, then

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (0 ∗ (x ∗ z)) ∗ (z ∗ y) = 0 ∗ (z ∗ y) = 0.

If x 66 y and x 66 z, then

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (x ∗ x) ∗ (z ∗ y) = 0 ∗ (z ∗ y) = 0.

If x 66 y and x 6 z, it is easy to verify from the transitivity of the partial

ordering 6 that z 66 y. Also, since 0 is the least element of X , by x 66 y, we

have x 6= 0, thus x 66 0. Therefore

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (x ∗ 0) ∗ z = x ∗ z = 0.

Summarizing the above arguments, BCI-1 holds.

Example 1.1.4. Let X = {0, 1, a}. Define a binary operation ∗ on X by

the following ∗ multiplication table:

∗ 0 1 a

0

1

a

0 0 a

1 0 a

a a 0

It is not difficult to verify that (X ; ∗, 0) is a BCI-algebra.
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The next example points out that our axiom system is independent.

Example 1.1.5. Suppose that X is the set {0, 1, a}. Define three binary

operations ∗, ∗′ and ∗′′ on X by the following Cayley tables respectively:

∗ 0 1 a

0

1

a

0 0 a

1 0 0

a a 0

∗
′ 0 1 a

0

1

a

0 0 0

a a 0

a a 0

∗
′′ 0 1 a

0

1

a

0 0 0

1 0 0

a 0 0

It is easily seen from the first table that (X ; ∗, 0) satisfies BCI-2 and BCI-3,

but it does not satisfy BCI-1 because

((1 ∗ a) ∗ (1 ∗ 0)) ∗ (0 ∗ a) = (0 ∗ 1) ∗ a = 0 ∗ a = a 6= 0.

From the second table, routine verification gives that (X ; ∗′, 0) satisfies

BCI-1 and BCI-3, but it does not satisfy BCI-2, for 1 ∗′ 0 = a 6= 1. As for

the third table, it is not difficult to verify that (X ; ∗′′, 0) meets BCI-1 and

BCI-2, however, it does not meet BCI-3 since 1 ∗′′ a = 0 and a ∗′′ 1 = 0, but

1 6= a.

We now investigate a number of elementary and fundamental properties

of BCI-algebras. There are other axiom systems for BCI-algebras. Here we

will give one of them.

Theorem 1.1.1. An algebra (X ; ∗, 0) of type (2, 0) is a BCI-algebra if and

only if it satisfies the following conditions: for all x, y, z ∈ X,

(1) BCI-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;

(2) (x ∗ (x ∗ y)) ∗ y = 0;

(3) x ∗ x = 0;

(4) BCI-3: x ∗ y = 0 and y ∗ x = 0 imply x = y.

Proof. Necessity. It suffices to prove (2) and (3). By BCI-2 and BCI-1,

(x ∗ (x ∗ y)) ∗ y = ((x ∗ 0) ∗ (x ∗ y)) ∗ (y ∗ 0) = 0,

(2) holding. By the same reasons,

x ∗ x = (x ∗ x) ∗ 0 = ((x ∗ 0) ∗ (x ∗ 0)) ∗ (0 ∗ 0) = 0,

(3) holding.

Sufficiency. It only needs to show BCI-2. Replacing y by 0 in (2), we get

(x ∗ (x ∗ 0)) ∗ 0 = 0. (1.1.1)

Substituting x ∗ 0 for y and x for z in (1), it follows

((x ∗ (x ∗ 0)) ∗ (x ∗ x)) ∗ (x ∗ (x ∗ 0)) = 0.
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Using (3), the last identity becomes

((x ∗ (x ∗ 0)) ∗ 0) ∗ (x ∗ (x ∗ 0)) = 0. (1.1.2)

An application of (1.1.1) to (1.1.2) gives

0 ∗ (x ∗ (x ∗ 0)) = 0. (1.1.3)

Comparing (1.1.1) with (1.1.3) and using (4), we obtain

x ∗ (x ∗ 0) = 0. (1.1.4)

Also, by (3) and (2), the following holds:

(x ∗ 0) ∗ x = (x ∗ (x ∗ x)) ∗ x = 0. (1.1.5)

Now, combining (1.1.4) with (1.1.5) and using (4) once again, it yields

x ∗ 0 = x, showing BCI-2.

BCI-algebras are essentially a class of ordered algebras in the following

point of view.

Proposition 1.1.2. Suppose that (X ; ∗, 0) is a BCI-algebra. Define a

binary relation 6 on X by which x 6 y if and only if x ∗ y = 0 for any

x, y ∈ X. Then (X ; 6) is a partially ordered set with 0 as a minimal

element in the meaning that x 6 0 implies x = 0 for any x ∈ X.

Proof. For any x, y, z ∈ X , by Theorem 1.1.1(3), we have x ∗ x = 0, then

x 6 x, which is just the reflexivity. If x 6 y and y 6 x, then x ∗ y = 0 and

y ∗ x = 0, and so x = y by BCI-3, proving the anti-symmetry. If x 6 y and

y 6 z, then x ∗ y = 0 and y ∗ z = 0, and so BCI-2 and BCI-1 together give

x ∗ z = ((x ∗ z) ∗ 0) ∗ 0 = ((x ∗ z) ∗ (x ∗ y)) ∗ (y ∗ z) = 0,

hence x 6 z and the transitivity is true. We have shown that 6 is a partial

ordering on X . Therefore (X ; 6) is a partially ordered set. Finally, if x 6 0,

then x ∗ 0 = 0. Also, by BCI-2, x ∗ 0 = x. Hence x = 0 and 0 is a minimal

element of X .

We often call the partial ordering 6 defined in Proposition 1.1.2 the BCI-

ordering on X . From now on, the symbol 6 will be used to denote the

BCI-ordering, unless specified otherwise.

Theorem 1.1.3. An algebra (X ; ∗, 0) of type (2, 0) is a BCI-algebra if and

only if there is a partial ordering 6 on X such that the following conditions

hold: for any x, y, z ∈ X,

(1) (x ∗ y) ∗ (x ∗ z) 6 z ∗ y;

(2) x ∗ (x ∗ y) 6 y;

(3) x ∗ y = 0 if and only if x 6 y.
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Proof. Assume that (X ; ∗, 0) is a BCI-algebra, then the BCI-ordering 6 is

a partial ordering on X . By our definition of 6, (3) is valid. Also, BCI-1

and (3) imply (1); Theorem 1.1.1(2) and (3) imply (2).

Conversely, assume that 6 is a partial ordering on X , satisfying (1), (2)

and (3). Because of (3), (1) is equivalent to BCI-1, and (2) to

(x ∗ (x ∗ y)) ∗ y = 0.

Also, by the reflexivity of 6, we have x 6 x, then (3) implies x ∗ x = 0.

Moreover, if x ∗ y = 0 and y ∗ x = 0, then x 6 y and y 6 x by (3), and so

the anti-symmetry of 6 gives x = y. Therefore (X ; ∗, 0) is a BCI-algebra

by Theorem 1.1.1.

The next proposition will be used frequently, whose proof is not difficult

and left to the reader.

Proposition 1.1.4. Let x, y, z be any elements in a BCI-algebra X. Then

(1) x 6 y implies z ∗ y 6 z ∗ x;

(2) x 6 y implies x ∗ z 6 y ∗ z.

Theorem 1.1.5. Given a BCI-algebra X, the following identity holds:

(x ∗ y) ∗ z = (x ∗ z) ∗ y.

Proof. By Theorem 1.1.3(2), x∗(x∗z) 6 z, then Proposition 1.1.4(1) implies

(x ∗ y) ∗ z 6 (x ∗ y) ∗ (x ∗ (x ∗ z)).

Also, substituting x ∗ z for z in the inequality of Theorem 1.1.3(1), we have

(x ∗ y) ∗ (x ∗ (x ∗ z)) 6 (x ∗ z) ∗ y.

Then the transitivity of 6 gives

(x ∗ y) ∗ z 6 (x ∗ z) ∗ y for any x, y, z ∈ X.

Replacing y by z and z by y in the last inequality, we obtain

(x ∗ z) ∗ y 6 (x ∗ y) ∗ z.

Hence the anti-symmetry of 6 implies that (x ∗ y) ∗ z = (x ∗ z) ∗ y.

Theorem 1.1.5 gives a nice property that all elements except the first one

in the expression (x ∗ y) ∗ z can exchange their places. For convenience, we

call it the head-fixed commutative law. The following is an immediate

corollary of the head-fixed commutative law.

Corollary 1.1.6. Let x, y, z be three elements of a BCI-algebra X. Then

(1) x ∗ y 6 z if and only if x ∗ z 6 y, in particular, x ∗ y = z implies

x ∗ z 6 y;
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(2) (x ∗ z) ∗ (y ∗ z) 6 x ∗ y.

Repeatedly applying the head-fixed commutative law, we will also obtain

the following corollary.

Corollary 1.1.7. Let x and ai (i = 1, 2, · · · , n) be any elements in a

BCI-algebra X. Then

(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = (· · · ((x ∗ ai1) ∗ ai2) ∗ · · · ) ∗ ain

where i1i2 · · · in is a permutation of 1, 2, · · · , n.

Theorem 1.1.8. Given a BCI-algebra X, the following identities hold:

(1) x ∗ (x ∗ (x ∗ y)) = x ∗ y;

(2) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y).

Proof. (1) By Theorems 1.1.3(1) and 1.1.1(2), we obtain

(x ∗ y) ∗ (x ∗ (x ∗ (x ∗ y))) 6 (x ∗ (x ∗ y)) ∗ y = 0.

Since 0 is a minimal element of X , it follows

(x ∗ y) ∗ (x ∗ (x ∗ (x ∗ y))) = 0.

Also, by Theorem 1.1.1(2), we have

(x ∗ (x ∗ (x ∗ y))) ∗ (x ∗ y) = 0.

Therefore x ∗ (x ∗ (x ∗ y)) = x ∗ y by BCI-3.

(2) By Theorem 1.1.1(3) and Corollary 1.1.7, it yields

(0 ∗ x) ∗ (0 ∗ y) = (((x ∗ y) ∗ (x ∗ y)) ∗ x) ∗ (0 ∗ y)

= (((x ∗ x) ∗ y) ∗ (0 ∗ y)) ∗ (x ∗ y)

= ((0 ∗ y) ∗ (0 ∗ y)) ∗ (x ∗ y)

= 0 ∗ (x ∗ y).

We call the first property in Theorem 1.1.8 the absorptance of elements

and the second the left distributivity of zero.

Throughout this book we will denote N for the set of all nonnegative

integers: 0, 1, 2, · · · , and N∗ for the set of all natural numbers: 1, 2, 3, · · · ,

and we will also use the following notations in brevity:

x ∗ y0 = x,

x ∗ yn = (· · · ((x ∗ y) ∗ y) ∗ · · · ) ∗ y
︸ ︷︷ ︸

n times

,

where x, y are any elements in a BCI-algebra and n ∈ N ∗.
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Proposition 1.1.9. Let x, y be two elements in a BCI-algebra X. Then

(1) x ∗ (x ∗ (x ∗ y))n = x ∗ yn for any n ∈ N ;

(2) 0 ∗ (0 ∗ xn) = 0 ∗ (0 ∗ x)n for any n ∈ N .

Proof. (1) We will proceed by induction on n. If n = 0, then the equality

is obviously true. Assume that the equality is valid for n = k, that is,

x ∗ (x ∗ (x ∗ y))k = x ∗ yk.

Then Corollary 1.1.7 and the absorptance of elements together give

x ∗ (x ∗ (x ∗ y))k+1 = (x ∗ (x ∗ (x ∗ y))k) ∗ (x ∗ (x ∗ y))

= (x ∗ yk) ∗ (x ∗ (x ∗ y))

= (x ∗ (x ∗ (x ∗ y))) ∗ yk

= x ∗ yk+1.

So, the equality holds for n = k +1. Therefore x ∗ (x ∗ (x ∗ y))n = x ∗ yn for

any n ∈ N .

(2) There is no harm in assuming n > 1. Repeatedly applying the left

distributivity of zero, it follows

0 ∗ (0 ∗ xn) = 0 ∗ ((0 ∗ xn−1) ∗ x)

= (0 ∗ (0 ∗ xn−1)) ∗ (0 ∗ x)

= (0 ∗ (0 ∗ xn−2)) ∗ (0 ∗ x)2

= · · · = 0 ∗ (0 ∗ x)n.

Given an element x in a BCI-algebra X , if it satisfies 0 ∗ x = 0 (that

is, x > 0), the element x is called a positive element of X . From our

definition, the zero element 0 of X is positive. It is easily seen that the set

of all positive elements of the algebra in Example 1.1.4 is {0, 1}.

Proposition 1.1.10. Let X be a BCI-algebra. Then x ∗ (0 ∗ (0 ∗ x)) is a

positive element of X for every x ∈ X.

Proof. By the left distributivity of zero and the absorptance of elements,

0 ∗ (x ∗ (0 ∗ (0 ∗ x))) = (0 ∗ x) ∗ (0 ∗ (0 ∗ (0 ∗ x)))

= (0 ∗ x) ∗ (0 ∗ x) = 0,

then x ∗ (0 ∗ (0 ∗ x)) is positive.

Minimal elements play an important role in the research of BCI-algebras.

An element a in a BCI-algebra X is called minimal if x∗a = 0 (i.e., x 6 a)

implies x = a for any x ∈ X . It is called least if a ∗ x = 0 (i.e., a 6 x)

for all x ∈ X . Dually, the element a is called maximal if a ∗ x = 0 (i.e.,
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a 6 x) implies a = x for any x ∈ X . It is called greatest if x ∗ a = 0

(i.e., x 6 a) for all x ∈ X . From our definitions, the zero element 0 of X

is minimal, and the least element must be 0 if it exists. Also, the set of

all minimal elements and the set of all maximal elements of the algebra in

Example 1.1.4 are respectively {0, a} and {1, a}.

Proposition 1.1.11. Assume that a is an element in a BCI-algebra X.

Then the following conditions are equivalent:

(1) a is minimal;

(2) 0 ∗ (0 ∗ a) = a;

(3) there is x ∈ X such that a = 0 ∗ x.

Proof. (1) =⇒ (2). By Theorem 1.1.1, (0 ∗ (0 ∗ a)) ∗ a = 0. Since a is

minimal, it follows 0 ∗ (0 ∗ a) = a.

(2) =⇒ (3). By (2), a = 0 ∗ (0 ∗ a) = 0 ∗ x where x = 0 ∗ a.

(3) =⇒ (1). Suppose that a = 0 ∗ x for some x ∈ X . For every y ∈ X ,

if y ∗ a = 0, then y ∗ (0 ∗ x) = 0. By the absorptance and head-fixed

commutative law, we have

a ∗ y = (0 ∗ x) ∗ y = (0 ∗ (0 ∗ (0 ∗ x))) ∗ y = (0 ∗ y) ∗ (0 ∗ (0 ∗ x)).

Using the left distributivity of zero, we also have

(0 ∗ y) ∗ (0 ∗ (0 ∗ x)) = 0 ∗ (y ∗ (0 ∗ x)) = 0 ∗ 0 = 0.

Hence a ∗ y = 0. In addition, y ∗ a = 0. It follows y = a by BCI-3. Thus a

is a minimal element of X .

Finally let’s consider the notion of subalgebras.

Definition 1.1.2. Let (X ; ∗, 0) be a BCI-algebra. A subset Y of X is

called a subalgebra of X if the constant 0 of X is in Y , and (Y ; ∗, 0) itself

forms a BCI-algebra.

The following is a criterion of subalgebras, whose proof is easy and left

to the reader.

Proposition 1.1.12. A non-vacuous subset Y of a BCI-algebra X is a

subalgebra of X if and only if Y is closed under the ∗ multiplication on X

(i.e., x ∈ Y and y ∈ Y imply x ∗ y ∈ Y for any x, y ∈ X).

X and {0} are obviously two subalgebras of X , which are called, by a

joint name, the trivial subalgebras of X . If a subalgebra of X is properly

contained in X , it is called a proper subalgebra of X . Thus {0} is a

proper subalgebra of X whenever X 6= {0}.
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In Example 1.1.4, the set of all positive elements and the set of all minimal

elements of X are subalgebras of X , but the set of all maximal elements of

X is not. In general, we have the following.

Proposition 1.1.13. If X is a BCI-algebra, then B and P are subalgebras

of X, where B is the set of all positive elements of X, and P the set of all

minimal elements of X.

Proof. Since 0 is positive, B is non-vacuous. For any x, y ∈ B, we have

0 ∗ x = 0 and 0 ∗ y = 0, then the left distributivity of zero gives

0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) = 0 ∗ 0 = 0.

Hence x ∗ y ∈ B. Therefore B is a subalgebra of X by Proposition 1.1.12.

Next, since 0 is minimal, P is nonempty. For any a, b ∈ P , if x 6 a ∗ b,

then Proposition 1.1.4(2) and the head-fixed commutative law give

x ∗ a 6 (a ∗ b) ∗ a = (a ∗ a) ∗ b = 0 ∗ b,

thus x ∗ (0 ∗ b) 6 a by Corollary 1.1.6(1). As a is a minimal element of X ,

we obtain x ∗ (0 ∗ b) = a. Now, by the head-fixed commutative law and

Theorem 1.1.3,

a ∗ x = (x ∗ (0 ∗ b)) ∗ x = (x ∗ x) ∗ (0 ∗ b) = 0 ∗ (0 ∗ b) 6 b.

Then Corollary 1.1.6 implies that a ∗ b 6 x. In addition, x 6 a ∗ b. Hence

x = a ∗ b. We have then shown that a ∗ b is a minimal element of X . Thus

a ∗ b ∈ P . Therefore P is a subalgebra of X by Proposition 1.1.12.

At the end of the first section we recall our recognition: BCI-algebras

are a class of ordered algebras with the head-fixed commutative law and

absorptance mentioned above, not satisfying the commutative law and as-

sociative law, having close contacts with the theories of lattices and groups.

Without doubt, BCI-algebras are a class of universal algebras.

Exercises

1.1.1. Verify that the algebra X in Example 1.1.4 and the algebra I4−2−2 in

Appendix B are BCI-algebras.

1.1.2. Show that an algebra (X; ∗, 0) of type (2,0) is a BCI-algebra if and only

if it satisfies the following conditions: for any x, y, z ∈ X,

B: ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0;

C: ((x ∗ y) ∗ z) ∗ ((x ∗ z) ∗ y) = 0;

I: x ∗ x = 0;

BCI-3: x ∗ y = 0 and y ∗ x = 0 imply x = y.

[Remark. The conditions B, C and I correspond to the combinators B, C
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and I in combinatory logic, and the name of BCI-algebras is taken from

BCI-system.]

1.1.3. Give the proof of Proposition 1.1.4.

1.1.4. Let X be a BCI-algebra. Show that for all x, y, z ∈ X and n ∈ N ,

(1) x ∗ y = x implies x ∗ yn = x;

(2) x ∗ yn = x ∗ yn+1 implies x ∗ yn = x ∗ ym for all m > n;

(3) x 6 y implies x ∗ zn 6 y ∗ zn and z ∗ yn 6 z ∗ xn.

1.1.5. Let X be a BCI-algebra. Show that for all x, y, z, u, v ∈ X,

(1) x 6 y implies u ∗ (z ∗ x) 6 u ∗ (z ∗ y);

(2) (x ∗ (y ∗ z)) ∗ (x ∗ (y ∗ u)) 6 z ∗ u;

(3) (x ∗ (y ∗ (z ∗ u))) ∗ (x ∗ (y ∗ (z ∗ v))) 6 v ∗ u;

(4) (x ∗ zn) ∗ (y ∗ zn) 6 x ∗ y for all n ∈ N .

1.1.6. Let x, y be elements in a BCI-algebra X. Show that the following hold:

(1) (0 ∗ (x ∗ y)) ∗ (y ∗ x) = 0;

(2) 0 ∗ (x ∗ y)n = (0 ∗ xn) ∗ (0 ∗ yn) for all n ∈ N ;

(3) (x ∗ (x ∗ y)n) ∗ (y ∗ x)n 6 x for all n ∈ N .

1.1.7. Show that there exists one and only one element in a BCI-algebra X such

that it is both minimal and positive.

1.1.8. Let a be an element in a BCI-algebra X. Then the following conditions

are equivalent:

(1) a is minimal;

(2) a ∗ x = (0 ∗ x) ∗ (0 ∗ a) for any x ∈ X;

(3) a ∗ x = 0 ∗ (x ∗ a) for any x ∈ X.

1.1.9. Let X be a BCI-algebra. Show that for any x, y, z ∈ X,

(1) 0 ∗ x is a minimal element;

(2) x > y implies 0 ∗ x = 0 ∗ y;

(3) 0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))) = (0 ∗ y) ∗ (0 ∗ x).

1.1.10. Give the proof of Proposition 1.1.12.

1.1.11. If {Xi | i ∈ I} is the family consisting of certain subalgebras of a BCI-

algebra X, then the intersection
⋂

i∈I Xi is a subalgebra of X.

1.1.12. Let X be a BCI-algebra. Denote Y = {x ∈ X | 0 ∗ xn = 0} in which n is a

natural number. Show that Y is a subalgebra of X.

1.1.13. Let X1, X2 be subalgebras of a BCI-algebra X such that X1 6⊆ X2 and

X2 6⊆ X1. May the union X1 ∪X2 form a subalgebra of X?

1.1.14. Let (G; ∗, e) be the adjoint BCI-algebra of an Abelian group (G; ·, e) and

let H be a non-vacuous subset of G. Show that H is a subgroup of (G; ·, e)

if and only if it is a subalgebra of (G; ∗, e).

1.1.15. Let u be an element in a BCI-algebra X. Denote u ∗ X = {u ∗ x | x ∈ X}

and X ∗ u = {x ∗ u | x ∈ X}. Show that
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(1) u ∗X = {x ∈ X | u ∗ (u ∗ x) = x};

(2) u ∗ (u ∗X) = u ∗X;

(3) v ∈ u ∗X implies v ∗X ⊆ u ∗X;

(4) every minimal element a of X is in both u ∗X and X ∗ u;

(5) u ∗X and X ∗ u are subalgebras of X.

[Remark. By virtue of (4) and (5), if Y is the set consisting of the whole

elements in a row or in a column in the ∗ multiplication table of X, then

Y is a subalgebra of X, containing all minimal elements of X.]

1.1.16. Let I5−3−10 be as in Appendix B. Write down all subalgebras of it.

1.1.17. Let a, b be two elements in a BCI-algebra X. Show that if there is x ∈ X

such that x 6 a and x 6 b, then a ∗ b is a positive element of X.

1.1.18. Let X be a finite BCI-algebra of order n. Show that all of the elements in

X can be written as a sequence a0, a1, · · · , an−1 such that ar is a maximal

element of the set {a0, a1, · · · , ar} where 0 6 r 6 n − 1, thus ai ∗ aj 6= 0

whenever i > j.

[Remark. Such a sequence is called a standard sequence of X. In the

∗ multiplication table which is made from a standard sequence, every

element under the main diagonal is nonzero.]

1.1.19. Let X be a BCI-algebra. Show that if the zero element 0 of X is maximal,

then every element of X is minimal. Show that if the greatest element of

X exists, then every element of X is positive.

§§§1.2 BCK-Algebras

BCK-algebras are a special class of BCI-algebras, which play an impor-

tant role in the theory of BCI-algebras and have close contacts with lattice

theory. Historically, BCK-algebras were raised earlier than BCI-algebras.

In this section we will also consider the notions and elementary properties

of bounded BCK-algebras and involutory BCK-algebras.

Definition 1.2.1. Given a BCI-algebra X , if it satisfies the condition

BCK-1: 0 ∗ x = 0 for all x ∈ X (i.e., every element x ∈ X is positive),

we call the algebra a BCK-algebra.

It is obvious that if X is a BCK-algebra, then 0 is the only minimal

element of X , in other words, 0 is the least element of X . It is also obvious

that if Y is a subalgebra of a BCK-algebra, then Y itself is a BCK-algebra

too. The algebras in Examples 1.1.1 and 1.1.3 are BCK-algebras. Let’s

consider some further examples of BCK-algebras.
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Example 1.2.1. The set N of nonnegative integers, together with the bi-

nary operation ∗ on X defined by x ∗ y = max{0, x − y}, forms a BCK-

algebra, where the operation − is the subtraction as usual. In fact, it is

easy to verify from our definition of ∗ that BCI-2, BCI-3 and BCK-1 are

true. In order to verify BCI-1, we first note that the operation ∗ can be

rewritten as x ∗ y = 0 if x 6 y and x ∗ y = x − y if x > y. The verification

is as follows.

(1) If x 6 y, then

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (0 ∗ (x ∗ z)) ∗ (z ∗ y) = 0 ∗ (z ∗ y) = 0.

(2) If y < x 6 z, then x − y 6 z − y, and so

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ((x − y) ∗ 0) ∗ (z − y) = 0.

(3) If y < x and z 6 y, then x − y 6 x − z, and so

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ((x − y) ∗ (x − z)) ∗ 0 = 0.

(4) If y < z < x, then x − z < x − y, and so

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ((x − y) ∗ (x − z)) ∗ (z − y)

= ((x − y) − (x − z)) ∗ (z − y)

= (z − y) ∗ (z − y) = 0.

Summarizing the above arguments, BCI-1 holds. Therefore (N ; ∗, 0) is a

BCK-algebra.

Example 1.2.2. Let A be the set {an | n ∈ N} with N ∩ A = ∅. Denote

X = N ∪A. Define a binary operation ∗ on X as follows: for all m, n ∈ N ,

m ∗ n = max{0, m − n},

m ∗ an = 0,

am ∗ n = am+n,

am ∗ an = n ∗ m.

Then (X ; ∗, 0) is a BCK-algebra with the BCI-ordering

0 6 1 6 2 6 · · · 6 a2 6 a1 6 a0.

In fact, BCK-1, BCI-2 and BCI-3 are obviously true, and (N ; ∗, 0) is a

BCK-algebra by Example 1.2.1. In order to verify BCI-1, we denote

(xyz) = ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y)

and let m, n, p ∈ N . It is easy to see from our definition of ∗ that

(am ∗ n) ∗ (am ∗ p) = p ∗ n, (1.2.1)

((am ∗ n) ∗ t) ∗ (ap ∗ n) = p ∗ (m + t) for all t ∈ N. (1.2.2)

Now we are ready to verify BCI-1.
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(1) If x = m, y = n and z = p, since N is a BCK-algebra, (xyz) = 0.

(2) If x = m, y = n and z = ap, since (m ∗n) ∗ 0 = m ∗n ∈ N , we obtain
(xyz) = ((m ∗ n) ∗ (m ∗ ap)) ∗ (ap ∗ n)

= ((m ∗ n) ∗ 0) ∗ ap+n = 0.

(3) If x = m and y = an, then (xyz) = 0 by BCK-1.

(4) If x = am, y = n and z = p, then (1.2.1) implies

(xyz) = ((am ∗ n) ∗ (am ∗ p)) ∗ (p ∗ n)

= (p ∗ n) ∗ (p ∗ n) = 0.

(5) If x = am, y = n and z = ap, since am ∗ap = p ∗m ∈ N , (1.2.2) gives
(xyz) = ((am ∗ n) ∗ (am ∗ ap)) ∗ (ap ∗ n)

= p ∗ (m + (p ∗ m))

= max{0, p − m − max{0, p − m}} = 0.

(6) If x = am, y = an and z = p, then

(xyz) = ((am ∗ an) ∗ (am ∗ p)) ∗ (p ∗ an)

= ((n ∗ m) ∗ am+p) ∗ 0 = 0 ∗ 0 = 0.

(7) If x = am, y = an and z = ap, since (N ; ∗, 0) is a BCK-algebra,

(xyz) = ((am ∗ an) ∗ (am ∗ ap)) ∗ (ap ∗ an)

= ((n ∗ m) ∗ (p ∗ m)) ∗ (n ∗ p)

= ((n ∗ m) ∗ (n ∗ p)) ∗ (p ∗ m) = 0.

Summing up the above arguments, BCI-1 is valid. Therefore (X ; ∗, 0) is a

BCK-algebra. Finally, note that m ∗ n = 0 iff m 6 n and am ∗ an = 0 iff

n 6 m as well as m ∗ an = 0. The BCI-ordering on X is

0 6 1 6 2 6 · · · 6 a2 6 a1 6 a0.

The next example is famous, which was given by A. Wroński in 1983.

For convenience, we call such BCK-algebra the Wroński’s algebra.

Example 1.2.3. For the Wroński’s algebra (X ; ∗, 0), the underlying set

X = N ∪ A ∪ B in which A = {an | n ∈ N} and B = {bn | n ∈ N} and

each pair of the sets N, A, B is disjoint. And the ∗ multiplication on X is

defined as follows (here, the figure describes the Hasse diagram of X): for

any m, n ∈ N ,

m ∗ n = max{0, m − n},

m ∗ an = m ∗ bn = 0,

am ∗ n = am+n,

bm ∗ n = bm+n,

am ∗ an = bm ∗ bn = n ∗ m,

am ∗ bn = bm ∗ an = (n + 1) ∗ m.
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