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Foreword

We live in an era of contrasts, when rapidly developing science and technology from
genetic research to availability of astounding computing power, still fall short of addressing
societal expectations of individualized patient care. This is especially relevant in the
clinical management of cancer, where prediction of the likely outcome from standard or
alternative treatments is criticial.

This book reviews recent advances across a range of disciplines, including integrated
decision support systems comprising molecular markers, from histopathology to clinical
signs, which combine with sophisticated non-linear mathematical and statistical methods
to accurately predict outcome from standard treatment. These developments make way for
personalized inferences using as much as possible of the individual’s bioprofile, in order
to explore the covariate dependence of outcomes of interest—typically, diagnosis of malig-
nancy, tumour grading, or time-to-event statistics for mortality and recurrence.

Current improvements in generic non-linear algorithms enable explicit modelling of
complex decision boundaries and survival curves, without resorting to limiting assump-
tions regarding parameter linearity or hazard proportionality. Nevertheless, it is advisable
to adopt a realistic approach to complex non-linear modelling, with a clear understanding
of the biological significance of the candidate biomarkers for predictive inference, since
the availability of vast numbers of genetic indicators, for example, runs the risk of identi-
fying spurious correlations that would not stand up in the analysis of unseen data.
Recommendations for robust non-linear processing, illustrated by real-world case studies,
have been made in several chapters of this book. Several analyses of censored time-to-
event data, so crucial to modelling cancer outcomes, are benchmarked against proven
statistical methods. This demonstrates the robustness, flexibility and predictive accuracy
achieved by powerful new analytical frameworks. Difficult issues essential for obtaining
reliable predictions are addressed, including model selection and efficient regularization.

Practical decision support systems also require an infrastructure supporting standardized
data acquisition from remote centres and for remote access. These issues are equally as
critical as the use of advanced analysis methods, since reliance on data-based models
depends on the completeness, integrity and consistency of the underlying data. An important
message of the book is that the added value from data analysis now justifies an investment
on standardized protocols for data acquisition and monitoring. This enables multicentre
modelling and evaluation studies to take place on a large scale, beyond what is possible
solely on the basis of existing historical patient records.
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In conclusion, this book is an up-to-date review of the state-of-the-art in several key
elements for practical outcome prediction, which is of special importance for the manage-
ment of cancer. It makes the case for collaborative efforts between technical and scientific
disciplines, such as cytogenetics, healthcare informatics and machine learning, and,
beyond them, into the clinical arena.

Strictly standardized practices in data acquisition, laboratory measurements, clinical
protocols and data recording will magnify the value already abstracted through the use of
sophisticated numerical methods. They will bridge the gap between “dead data”, repre-
senting clinical audit trails, and prospective data, from which solid insights are gained into
the phenomenology of cancer. They also serve as practical clinical instruments for predic-
tive inference evidence on the basis of previous patient histories. My hope is that this book
will, in some way, inspire the beginning of this momentous transformation.

Paulo J.G. Lisboa, BSc, PhD, CEng, FIEE, FIMA
School of Computing and

Mathematical Sciences

Liverpool John Moores University

United Kingdom
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Introduction

Outcome prediction in cancer has been the subject of interest to clinicians, healthcare
workers and patients for many decades. Survival is the most important outcome to patients
since it helps them plan their lives and provide care to their family members. However,
there are other outcomes of equal importance such as loss of functionality, disfigurement
and quality of life.

Traditional methods of outcome prediction in cancer include the Kaplan—-Meier non-
parametric model and the Cox regression semi-parametric model. There has also been
considerable interest in the use of artificial neural networks (ANNs) in outcome prediction
due to the number of theoretical advantages they offer. ANNs can provide much wider (but
not infinite) flexibility in fitting models to data where patterns are not so obvious (Ripley,
1996). The main advantages of using ANNs in modelling are: first, they allow arbitrary
non-linear relationships between independent and dependent variables, second, they allow
all possible interactions between dependent variables and third, ANNs do not require explicit
distributional assumption.

Many clinicians have realised the potential of ANNs as an aid tool in the analysis. The
main concern over the “black box” issue has been addressed by a number of researchers
who have provided a statistical framework for ANNs (Biganzoli et al., 1998; Ripley and
Ripley, 2001; Lisboa et al., 2003; Bishop, 2004).

A useful measure for the success of new technologies in integrating into clinical prac-
tice is the number of clinical trials in the literature. Despite a large number of publications
describing the use of ANNSs in medicine, the number of clinical trials in this area remains
small (Gant et al., 2001; Lisboa, 2002; Lisboa and Taktak, 2006). The reluctance of clini-
cians to readily embrace these powerful tools in everyday practice can be attributed to
many factors. In the past, a number of researchers have experimented with these
techniques taking advantage of their “black-box” nature. Whilst the benefit of such feature
does have its appeal, it can also be the curse on these powerful tools. Lack of understand-
ing of the underpinning mathematical science often leads to inappropriate use of the tech-
nique which ultimately leads to wrong conclusions. A common mistake, for example, is
the use of far too few samples with a limited number of events in the test set (Bottaci et al.,
1997; Das et al., 2003). In such cases, quoting the accuracy alone of the test set as a meas-
ure of performance is not very useful since this figure would be high even if the networks
did not detect the event at all (Ripley and Ripley, 2001; Kaiserman et al., 2005).

The majority of clinical trial studies compared the performance of ANNs with other
methods such as clinical indicators (Stephan et al., 2003) and statistical analysis (Remzi
et al., 2003). In cervical cancer, there are many examples on the use of the widely known
PAPNET system, one of very few ANN systems to gain FDA approval for clinical use.
The system uses ANNs to extract abnormal cell appearance from vaginal smear slides
and describe them in histological terms (Boon and Kok, 2001). The alternative more
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conventional way is to re-screen the slides under the microscope. Mango and Valente
(1998) have shown that the PAPNET system has uncovered a higher proportion of false
negatives than conventional microscopic re-screening as confirmed by cytologists.
Sherman et al. (1997) looked at the results of PAPNET in 200 specific cases where initial
screening was inconclusive and compared them with conventional microscopy, DNA
analysis and biopsy. The study showed that for these cases, PAPNET would have reduced
unnecessary biopsies but at the expense of increasing false positives. Parekattil et al.
(2003) showed in a clinical trial on bladder cancer that their ANN model was more accu-
rate in identifying patients who required cystoscopy thereby providing possible savings.

This book provides an insight into survival analysis from different perspectives. It is
aimed at bringing together specialists from different disciplines who deal with the prob-
lem from an entirely different angle but share a common goal. The book is organised into
the following five main sections:

The clinical problem

The first section of this book contains chapters highlighting the traditional methods for
providing prognosis. Such methods involve the widely used TNM staging system based on
the extent of tumour involvement at the primary site (T), lymph node involvement (N) and
metastasis (M). The system provides a number which reflects the stage of the tumour
which influences the prognosis and choice of treatment. A number of studies in the
literature have looked into the true value of this system for different types of cancer. In
Chapter 1, Woolgar provides an overall review of the prognostic value of traditional and
contemporary pathological features in oral cancer and suggests practical tips to aid report-
ing pathologists in producing their assessment. In Chapter 2, Damato and Taktak highlight
some of the limitations of traditional methods including inappropriate categorisation of
baseline variables, competing outcome, bias resulting in under- or over-reporting of
outcomes and speculative interpretation of outcome data. Competing risks becomes obvi-
ous when using age, for example, as one of the input variables in tumour-specific survival.
As older patients withdraw from the study at a higher rate than younger ones, this intro-
duces a bias in the model. In Chapter 3, Hakulinen and Dyba explain how to deal with the
issue of competing risks.

Biological and genetic factors

In Chapter 4, Cassidy and Field outline various risk factors and the interactions between
them in studying lung cancer. The chapter looks at developing an individual molecular
genetic and epidemiological risk assessment model to identify high-risk individuals who
may subsequently be recruited into an appropriate intervention programme. In the next
chapter in this section, Jones proposes a model for cellular pathways illustrating the
chaotic nature of cancerous cells and explains how a “top-down” system from gene
to phenotype (such as biochemistry models), each employing rigid pathways is far too
inferior against a system which allows for fluid interconnections such as a neural network.
A pilot study in this chapter involving 1000 patients with laryngeal carcinoma is also
described.
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Mathematical background of prognostic models

In this section, the mathematical background of prognostic models and ANNS in particu-
lar are described in detail. In Chapter 6, Biganzoli and Boracchi explain the mathematical
background of non-linear interactions of the explanatory variables in survival models. This
aspect is of great importance in applying these models to genetic and proteomic data with
very high throughput of data. In Chapter 7, Eleuteri et al. observe the fact that the use of
conventional models may involve making too strict assumptions and they describe how
feature selections can be carried out mathematically in ANN models. In Chapter 8, Arsene
and Lisboa provide an in-depth analysis into the role of neural networks within the context
of statistical methods and parametric techniques and apply the model developed in
node-negative breast cancer patients.

Application of machine learning methods

A number of applications using various types of machine learning algorithms are included
in this section. In Chapter 9, Marchevsky provides a useful overview on the practical
aspects of applying ANN models and discusses some of the difficulties in validating the
accuracies of these models. In Chapter 10, Baronti et al. describe the application of
machine learning methods in head and neck squamous cell carcinoma and how the indi-
vidual risk is modified by genetic factors, such as polymorphisms of enzymes involved in
the metabolism of tobacco carcinogens and in the DNA repair mechanisms. Devos et al.
discuss the use of magnetic resonance spectroscopic imaging (MRSI) and the combination
with conventional magnetic resonance imaging (MRI) for the automated characterisation
of brain tumours in Chapter 11. The importance of a medical decision support system for
clinical purposes fusing data from several MR and non-MR techniques is also discussed.
In Chapter 12, Kokuer et al. propose various statistical and artificial intelligence models in
studying hereditary non-polyposis colorectal cancer with the view of screening those at
higher risk more regularly. In the final chapter of this section, Kounelakis et al. review
several genomic-based methods for brain cancer analysis with the emphasis on DNA
microarrays technology.

Dissemination of information

A very important aspect which is often overlooked is disseminating the information and
sharing the knowledge. This is crucial in order to achieve effective communication between
clinicians, healthcare workers and patients. The make-or-break of the most sophisticated
systems is sometimes dependent on the manner in which information is translated into
clinical practice such as building user-friendly interface tools. The internet provides the
ideal medium for ease of dissemination making information readily available to clinicians,
literally at their fingertips. In Chapter 14, Fonseca et al. review the state-of-the-art
intelligent medical information systems, the main problems associated with their develop-
ment and the currently adopted solutions. The final two chapters provide examples of
current systems. Setzkorn et al. describe the development of a web-based system for stan-
dardising and sharing information which is essential in multi-centre collaboration in
Chapter 15, whilst Kattan et al. focus on simple and effective communication tool called
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the nomogram; in Chapter 16. A nomogram is a graphical depiction of a multivariable
model which has been used for a long time, but (sadly) not as widely as one might expect
given its advantages.

Azzam F.G. Taktak
Department of Clinical Engineering
Royal Liverpool University Hospital, UK
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Chapter 1

The Predictive Value of Detailed Histological
Staging of Surgical Resection Specimens

in Oral Cancer

Julia A. Woolgar

Clinical Dental Sciences, University of Liverpool, Liverpool, UK

Email: jaw@liverpool.ac.uk

Abstract

It is well known that the outcome of squamous cell carcinoma of the oral cavity and oropharynx is related to the
stage (i.e. extent) of the tumour, and detailed histopathological assessment of the surgical resection specimen
provides information that is central to determining the post-operative treatment needs and prognosis for an
individual patient. This chapter reviews in detail the prognostic value of traditional and contemporary patholog-
ical features of the primary tumour and the cervical lymph node metastases; and outlines general patient factors
such as age, gender and co-morbidity, and considers their relative importance. Practical tips to aid the reporting
pathologist in producing a standardized pathological staging assessment are included. The value of the current
pathological TNM staging classification is considered and possible amendments and alternatives are explored.
The chapter ends with “the way ahead”? — a brief review of molecular and biological markers in oral and
oropharyngeal squamous cell carcinoma.
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1. INTRODUCTION

Oral cancer — squamous cell carcinoma arising from the surface epithelium lining the
mouth and oropharynx (OSCC) — is an important and serious disease. It ranks among
the ten most common cancers in the world, accounting for 3-5% of all malignancies
(Silverman, 2001). In Europe, the incidence has risen sharply in recent years, particularly
in females and younger age groups, apparently due to changing patterns of exposure to
tobacco and alcohol, the main aetiological factors which act on a genetically susceptible
individual (Bettendorf et al., 2004). Survival has remained at a disappointingly stable level
despite significant development in multimodality treatment (Silverman, 2001; Bettendorf
et al., 2004), and in the United Kingdom, the death: registration ratio is 0.6 (1400 deaths
and 2500 new cases per year) (Hindle et al., 1996). In addition to the high mortality, the
disease causes great morbidity, with patients having to cope with both the aesthetic and
functional changes resulting from the disease and its treatment.

The extent of the disease at presentation has a major influence on outcome and survival.
The disease begins within the surface epithelium and invades the surrounding tissues.
In addition to the local spread, metastatic deposits develop in the regional (cervical) lymph
nodes in the neck in at least 50% of cases. Blood-borne systemic metastases, mainly to
the lungs, liver and bone, are common in the later stages of the disease but death usually
occurs as a result of uncontrolled locoregional disease and malignant cachexia (Woolgar
et al., 1999; Funk et al., 2002). Outcome is usually measured by actuarial (life tables)
survival analysis but consideration of only disease-specific deaths probably underestimates
the true impact of the disease due to the frequency of deaths due to cardiovascular and
respiratory diseases in the post-operative period, and also deaths indirectly related to the
disease, such as suicide (Woolgar et al., 1999).

OSCC can be treated by surgery, radiotherapy or chemotherapy, either alone or in
combination, depending on the site and stage of the disease and general factors such as
co-morbidity. Clinical staging of the extent of disease at both the primary site and in the
neck is notoriously inaccurate, and the value of CT, MRI and SPECT imaging remains
uncertain (Woolgar et al., 1995a; Woolgar, 1999a; Chong et al., 2004). The importance
of pathological staging of resection specimens, both in selecting patients for adjuvant
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therapies and in predicting survival, has been increasingly recognized in recent years.
Although the TNM staging classification (UICC, 2002) is widely used throughout the
world, it is too crude to offer an accurate prediction in an individual patient, since it consid-
ers only the surface diameter of the primary tumour (T); the number, laterality and size
of positive lymph nodes (N); and the presence or absence of systemic metastases (M).
In recent years, interest has been focused on the histological features of the deep invasive
tumour front, and molecular and genetic markers (Bryne et al., 1992, 1995; Martinez-
Gimenco et al., 1995; Po Wing Yuen et al., 2002; Sawair et al., 2003).

The main objective of this chapter is to discuss the predictive value of detailed histological
assessment of routine surgical specimens from patients with OSCC and to highlight prac-
tical considerations including the development of minimum datasets. In addition, it will
provide a brief overview of molecular and biological markers, and look at current predictive
models and consider future possibilities.

2. PREDICTIVE FEATURES RELATED TO THE PRIMARY TUMOUR
2.1. Surface greatest dimension (tumour diameter)

Surface greatest dimension — “tumour diameter” — is the feature used to indicate tumour size
in both the clinical (¢cTNM) and pathological (pTNM) arms of TNM staging classification
system (UICC, 2002). The prognosis of oral cancer worsens as the size at presentation
increases and several independent reports in the 1980s showed that large size at presenta-
tion is predictive of poor survival (Platz et al., 1983; Crissman et al., 1984; Maddox, 1984).

The diameter (and T stage) of the primary tumour affects both the choice and outcome
of treatment. The size of the primary tumour is an important factor in determining the
surgeon’s ability to obtain tumour-free margins (Scholl et al., 1986; Sutton et al., 2003),
and a higher rate of local recurrence is associated with tumours of increasing diameter and
T stage (Scholl et al., 1986; Woolgar et al., 1999; Sutton et al., 2003). In patients treated by
radiotherapy, tumour size is an important determinant of the dose necessary to effect a cure
(Bentzen et al., 1991).

Tumour size is an important predictor of cervical metastasis, and this is a major factor
in the correlation between diameter and outcome (Maddox, 1984; Woolgar et al., 1999).
Hibbert et al. (1983) attempted to study the prognostic effect of diameter alone, and their
results showed that in patients without cervical metastasis, diameter was not significantly
related to the 5-year survival. This finding may reflect the poor correlation between tumour
diameter and tumour thickness seen in patients without metastasis (Woolgar and Scott, 1995),
since tumour thickness rather than diameter appears to be the more important size criterion
in relation to both metastasis and survival (see below).

Diameter has the advantage that its clinical assessment is relatively simple compared
to the clinical assessment of tumour thickness, and this explains its pivotal role in the
TNM staging system. In the routine pathological staging assessment, no account is made
for tissue shrinkage during fixation and processing — around 15% of the fresh tissue volume
(Batsakis, 1999) — and the maximum diameter of invasive (not merely intraepithelial) carci-
noma is measured to the nearest millimetre using an optical micrometer to supplement the
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macroscopic inspection of the resection specimen (Woolgar and Scott, 1995; Helliwell and
Woolgar, 1998, in press). In addition to tissue shrinkage, discrepancies between the clinical
and pathological assessment of tumour diameter may occur due to the inability to distin-
guish between premalignant lesions and invasive carcinoma without microscopy, and the
presence of a poorly cohesive invasive tumour front with extensive undermining of intact
mucosa and satellite islands ahead of the main tumour mass, again features that are only
detectable on microscopy.

2.2. Tumour thickness

Tumour thickness measurement as a prognostic indicator was first introduced by Breslow
(1970) in relation to cutaneous malignant melanomas and the measurement proved to
be more objective and reproducible than an assessment of the Clarke level of invasion
(Clark et al., 1969) in which histological depth is expressed by reference to the anatomi-
cal deep structures reached by the advancing edge of the tumour. The technique was soon
applied to squamous cell carcinomas of the skin (Friedman et al., 1985), lip and intra-oral
mucosa (Frierson and Cooper, 1986; Mohit-Tabatabai et al., 1986; Shingaki et al., 1988),
and the superiority of thickness over diameter was soon recognized. Several independent
studies (Shingaki et al., 1988; Nathanson and Agren, 1989; Po Wing Yuen et al., 2002),
have shown that tumour thickness is the only size criterion to have independent predictive
value on multivariate analysis, particularly when the tumours are from a single intra-oral
site or restricted to TNM T1 and T2 categories (diameter less than 40 mm), and it is now
widely accepted that thickness is a more accurate predictor of sub-clinical nodal metastasis,
local recurrence and survival than diameter (Po Wing Yuen et al., 2002). Nevertheless, the
critical thickness differs widely in different reports and it is highly site dependent. For
example, the critical thickness in relation to metastasis in floor-of-mouth tumours was only
1.5 mm in the study by Mohit-Tabatabai et al. (1986) compared to 6 mm for tumours of the
buccal mucosa (Urist et al., 1987). In tumours of the oral tongue, the critical thickness is
less for tumours of the ventral aspect than the lateral border, possibly due to differences in
the depth, calibre and richness of the lymphatic vessels at the two sites (Woolgar and Scott,
1995). The reconstructed thickness — which compensates for both nodular and ulcerative
growth by measuring to an imaginary reconstructed mucosal surface (Moore et al., 1986;
Woolgar and Scott, 1995; Helliwell and Woolgar, 1998, in press) — is recommended as a
more accurate and robust predictor than actual tumour thickness (Woolgar and Scott, 1995;
Woolgar et al., 1999; Po Wing Yuen et al., 2002). In the study of Woolgar et al. (1999), the
tumours were from diverse sites within the mouth and oropharynx, yet the mean thickness
in patients dying of/with OSCC was twice that of survivors/patients dying free of OSCC.

Accurate pathological assessment of the thickness measurement (and other measurements
such as diameter and excision margins) relies on thorough sampling of the surgical speci-
men by slicing the complete resection specimen into thin (3—4 mm) slices to ensure that any
streaks and satellites, for example, due to vascular or neural invasion, are not overlooked.
The micrometer measurement must include all tumour islands, including those well ahead
of the main advancing tumour front. Immunohistochemical staining for pan-cytokeratins
is useful for highlighting stray islands and individual tumour cells in difficult cases.





