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Algebra and geometry”*
Z. X. Wan

Finite Groups. Early in 1938, while Hua taught at the Southwest Association
Associated University in Kunming, he conducted a seminar on finite groups; among
the topics studied were p-groups. In [46, 81], he introduced the concept of the rank
of a p-group. A p-group g of order p™ is said to be of rank «, if the maximum of the
orders of its elements is p”~®. Using this concept he proved that a pseudo-basis exists
in p-groups, i.e., if p > 3 and n > 2a + 1, then every element of g can be expressed

uniquely as
G=A0A% A AT 0<S<p—1, 0<5;<p—1,

where A is of order p"~ and A? ' — 1. With the aid of pseudo-bases, and of a modified
form of the enumeration principle of P. Hall, he proved several “Anzahl” theorems.
For instance, if g is a group of order p” and rank «(p > 3, n > 2a+1), then (i)g
contains one and only one subgroup of order p™ and rank a(2a +1 < m < n);
(i) g contains p® cyclic subgroups of order p™ (a < m < n — a — 1); (iii) the number

" (a<m < n—a)in gis equal to p™ . The second and

of elements of order < p
third results improved theorems of G. A. Miller and A. A. Kulakoff respectively.
Skew Fields. Since Hamilton’s first example of a non-commutative division
algebra——the quaternion algebra——division algebras have received a great deal
skew fields

were neglected; until, around 1950, with his perceptive direct algebraic method

of attention. By comparison, infinite dimensional division algebras

Hua proved several remarkable theorems in this area.

First, in 1949, Hual®® proved that “every semi-automorphism of a skew field
is either an automorphism or an anti-automorphism” (by a semi-automorphism of
a skew field we mean a one-to-one mapping o from the skew field into itself with
the properties (a + )7 = a” + b7, (aba)® = a’b%a’ and 1° = 1). This theorem

was referred to as the beautiful theorem of Hua by E. Artin in his book Geometric

* Reprinted from Loo-Keng Hua Selected Papers. New York: Springer-Verlag, 1983: 281-284.

The references in this article are those in this book.
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Algebra. From it Hual8®97 deduced also the fundamental theorem of l-dimensional
projective geometry over a skew field. In 1950171 he extended his theorem to semi-
homomorphisms of rings without zero divisors.

Secondly, in 1949 L. K. Hual®!l gave a straightforward proof that “every proper
normal subfield of a skew field is contained in its center”. This result appears in the
literature as the Cartan-Brauer-Hua theorem. Before the work of Hua and Richard
Brauer, Henri Cartan’s proof had used the complicated device of Galois extensions
over subfields. By contrast, Hua’s proof requires only the elementary identity: If
ab # ba, then

a= (b_l —(a—1)"""(a~- 1)) (a_lb_la —(a—1)"1"a - 1))71.

In 1950, Hual%! proved also that “if a skew field is not a field, then its multi-
plicative group is not meta-abelian”.

Classical Groups. Barly in 1946, L. K. Hual™! published his first paper on
automorphisms of classical groups, in which he determined the automorphisms of
a real symplectic group. Subsequently, in 1948, hel®®) determined the automorphisms
of a symplectic group over any field of characteristic not 2. The method of Hua for
determining the automorphisms of symplectic groups can be applied also to classical
groups of other types; but since Dieudonné published his results on the automorphisms

of classical groups in 1951, Hual'0!]

restricted himself to publishing only solutions, by
his own method, to a series of problems left open by Dieudonné. The first of these
was the determination of automorphisms of GL2(K), K being an arbitrary skew field
of characteristic # 2.

Besides GLy(K), Hual'®!l determined also the automorphisms of SL4(K) and
PSL4(K), where K is a skew field of characteristic not 2, and the automorphism of
Of (K, f), where K is a field of characteristic not 2 and f is a quadratic form of index
2. Afterwards, Hua and Z. X. Wan!'*®! determined the automorphisms of SLy(K)
and PSLo(K), where K is a skew field of characteristic # 0, the automorphisms of
SL4(K) and PSL4(K), where K is a skew field of characteristic 2, and they proved
also the nonisomorphism of certain linear groups.

Hua’s work on the automorphisms of classical groups, shows mastery of the
techniques of matrix calculation. The procedure is to start with the low-dimensional
cases and to proceed to the higher-dimensional cases by induction, as in [85], for
SPy, (K).

About the structure of classical groups, Hua extended the usual unitary group to
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the case when the basic field is not necessarily commutative but has an involutive anti-
automorphism. He proved that the group TU, (K1S) generated by unitary transvec-
tions modulo its center is a simple group, if S has index > 1 and that TU, (K,S) is
the commutator subgroup of U, (K1S), if the index of S satisfies n > 2V > 4.

Hua and I. Reiner102:106] also determined the automorphisms of GL,(Z) and
DGL,,(Z), which was the start of the work on the automorphisms of classical groups
over rings. Theyl®? also proved that GL,(Z) is generated by three elements, SL,,(Z)
by two elements, and Sps,(Z) by four elements for n > 2. Formerly Poincaré" had
stated without proof that Spa,(Z) is generated by elementary matrices of two simple
types, and later Brahana! had proved this by showing that every element of Sps, (Z)
is expressible as a product of matrices taken from some finite set of matrices.

Geometry of Matrices!67-76-78,93,99]

Study of this topic was initiated by Hua and
relates to Siegel’s work on fractional linear transformations. In it, the points of the
space are matrices of a certain kind, for instance, rectangular matrices, symmetric
matrices or skew-symmetric matrices of the same size. There is then a group of
motions in this space, and the problem is to characterize the group of motions by
as few geometric invariants as possible. First, he studied the geometry of matrices
of various types over the complex or real fields. Later, he extended his results to
the case when the basic field is not necessarily commutative and discovered that
the invariant “coherence” is alone sufficient to characterize the group of motions of
the space. Take his paper [99] as an example. He proved the fundamental theorem
of affine geometry of rectangular matrices: Let 1 < n < m. Then the one-to-one
mappings from the set of n X m matrices over a skew field K onto itself preserving
coherence (two matrices M and N are said to be coherent, if the rank of M—N is 1) is

necessarily of the form

Z1=PZ°Q+R, (1)

where P = P and Q = QU™ are invertible matrices, R is an n x m matriz, and o

is an automorphism of K; if n = m, then besides (1) we have also
Zy =PZ"Q+R,

where T is an anti-automorphism of K. From this theorem he deduced the fundamental

theorem of the projective geometry of rectangular matrices (the Grassmann space),

* Poincaré H. Rend Circ Mat Palermo, 1904, 18: 45-110.
1 Brahana R R. Ann of Math, 1923, 24 (2): 265-270.



4 PPt G I

and he determined the Jordan isomorphism of total matrix rings over skew fields of
characteristic # 2 and the Lie isomorphism of total matrix rings over skew fields of
characteristic # 2, 3.

Arising from the geometry of matrices and the theory of functions of several
complex variables, Hua went on to study the classification problem of matrices; for
instance, the classification of complex symmetric and skew-symmetric matrices under
the unitary group, of a pair of Hermitian matrices under congruencel®!, and of Hermi-
tian matrices under the orthogonal group(”™® (editorial note: by “elementary divisors
of a characteristic matrix” is meant, in current usage, “Jordan blocks” in a Jordan

d

normal form, in the sense that (X — a)® is an elementary divisor of multiplicity m if

and only if the Jordan form has exactly m blocks of d x d matrices

In [76], on p. 509 four lines from the bottom, read f/Q(f/)_l =T for fQ(f/)_l =T,
and on p. 512 line four, read H = KTy for K = HTy).
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P& a1ng +agng = 0, arzng +ayang = 0, N P2 = 5P, X, WIEAN ng,ny
ZVUIRSFIR R, fR2, WAF ng,ny L HUAE, HIEATVERE ng : ny : ng 2 g 2y ZAH,
WS E RT A b2 TR, s 2, BT O R T AT Al 22

B o’ A

DO ERAIAERAE Py P, B (1) ARESET (D) . KRRER -+,
aga, WASCIN R 2 Z A TRE, B MERITHATE, R0 Z VUK, ek 1

(—) ara3 = Ay, azay = As,
azaz + ajar = As, asa1 + azay = Ag;
(:) ajzay7 = As, a14018 = Ay,
a17a14 + a13a24 = Ayz, a18013 + a14a24 = Aqg;
(=) a13a15 + a1a3 = Ag, a14015 + ajag = Asz,
1011 + G209 = 18 — G14019, aaiy + ajsa1s = Ao,
asayg + ajzaie = Ag, a1a1o + agag = air — a13a1g;
(El) aias + aizazo = Aqi, asas + a13a22 = Ao,
aa12 + a14a22 = A9 — a13a23, ayaig + a1zaz; = Azg — aj4az9,
ajag + ajsaz; = Ay, aa6 + a14a33 = Ajs.

M BT IR R a7, 24 ) e (ﬁ)a (:) (53 ai, az,as,a4, 013, 014, @17, A18 Zfﬁ, S
ZHKT5A as, ars, ag, a1, are, arg LI —IRFTFER (K arg A EEN), LT HIAE 2,

FNILA BRSO
a1 a3 0 0 0

0
aqg ap 0 0 O

aa a3 0 0
0 ax ag O
0 0 a3 as
0 0 0 a

o O o o

ag

a, a 0 0 0
! 9 a14 Q7 0 0 0

as ap 0 0
= az aig 0
0 0 a1z ag

0 0 0 a

o O O O
o

a2
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ag 0 0 O
a9 aq 0 0

—ais 0 ay aigu 0 |=0,

o O o o

0 0 a13 Qa2
a 0 0 0 a

I ag, a1s, ag, ai1, ais, a1o = 6/A.
A =0, # as,a15,a9,a11, a16,a10 IFAERITIRK, #e (1) 55 A1) ZBRA
WA R, #52, M Py AFEAREMA —— Ik, MUEIRA GEfR 07 Rl



Geometries of matrices. I. Generalizations of von

Staudt’s theorem*

It was first shown in the author’s recent investigations on the theory of auto-
morphic functions of a matrix-variable that there are three types of geometry playing
important roles. Besides their applications, the author obtained a great many results
which seem to be interesting in themselves.

The main object of the paper is to generalize a theorem due to von Staudt, which
is known as the fundamental theorem of the geometry in the complex domain. The
statement of the theorem is:

FEvery topological transformation of the complex plane into itself, which leaves
the relation of harmonic separation invariant, is either a collineation or an anti-
collineation.

Since the fields and groups may be varied, several generalizations of von
Staudt’s theorem will be given. The proofs of the theorems have interesting
corollaries.

The paper contains also some fundamental results which will be useful in suc-
ceeding papers.

The interest of the paper seems to be not only geometric but also algebraic, for
example we shall establish the following purely algebraic theorem:

Let O be the module formed by n-rowed symmetric matrices over the complex
field. Let T be a continuous (additive) automorphism of MM leaving the rank unaltered
and T'(iX) = iI'(X). Then T is an inner automorphism of M, that is, we have a

nonsingular matriz T such that
N(X)=TXT'.

The author makes the paper self-contained in the sense that no knowledge of the

author’s contributions to the theory of automorphic functions is assumed.

x Presented to the Society, April 28, 1945; received by the editors November 20, 1944. Reprinted
from Transactions of the American Mathematical Society, 1945, 57: 441-481.
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[. Geometry of symmetric matrices

Let ® be any field. In I, II, and III, capital Latin letters denote n X n matrices
unless the contrary is stated. But on the contrary, we use M (™™ to denote an
n x m matrix, and M™ = M) T and 0 denote the identity and zero matrices
respectively.

Throughout I, we use

0 I I 0
= 7(3:: ;

which are 2n-rowed matrices.
1. Definitions

We make the following definitions.

A pair of matrices (Z1, Z3) is said to be symmetric if
(Z17 ZQ)%(Z17 ZQ)/ = 07

that is, if Z1Z} = Z5Z]. The pair is said to be nonsingular if (Z1, Z3) is of rank n.

A 2n x 2n matrix ¥ is said to be symplectic if

T =3

A B
T = ,

AB'=BA', CD' =DC', AD —BC'=1.

Explicitly, let

then we have

Further, it may be easily verified that

is also symplectic.
We define
(Wl7 WQ) = Q(Z17 ZQ)T

to be a symplectic transformation, where @ is nonsingular and ¥ is symplectic.
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Since
(W, Wo)F(Wh, Wa)' = Q(Z1, Z2)3FT (21, Z2)'Q',

a symplectic transformation carries symmetric (nonsingular) pairs into symmetric
(nonsingular) pairs.
We identify two nonsingular symmetric pairs of matrices (Z1, Z2) and (W7, Ws)

by means of the relation
(Z1, Z2) = Q(W1, Wa).

It is called a point of the space. The space so defined is unaltered under symplectic
transformations, which may be considered as the motions of the space.
If Z; and W7 are both nonsingular and if (W1, Ws) = Q(Z1, Z2)%, let

W=-W; Wy, Z=-Z;'Z,
then W and Z are both symmetric and
Z = (AW + B)(CW + D)~ *.

Thus a symmetric pair of matrices may be considered as homogeneous coordinates
of a symmetric matrix. The terminology “geometry of symmetric matrices” is thus
justified.

2. Equivalence of points

Theorem 1  Any two nonsingular symmetric pairs of matrices are equivalent.
Or what is the same thing: every nonsingular symmetric pair is equivalent to (I,0).
Proof Let (Z1,Z3) be a nonsingular symmetric pair.

(1) If Z; is nonsingular, we have

I S
(Z1,Z3) = Z1(1, Zy " Z2) = Z1(1,0) < 0 I )7

where S = Z; ' Z, is symmetric, and then

(0 7)

(2) Suppose Z; to be singular. We have nonsingular matrices P and @ such that

0 grner)
Wl o PZlQ o ( O(nfr,r) O(nfr)

is symplectic.
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and
(W1, Wa) = P(Z1, Z3) ( Cg Q/O—l )

and

- ( s m(m—m>
2 = 2 =

q(n—r,r) t(n—r)

Q 0
0 Q/—l

is symplectic, (W5, W2) is nonsingular and symmetric. Consequently s is symmetric

Since

and ¢ is a zero matrix.

Let
I -5
(U1,Uz) = (W1, W2) ( 0 7 > ;
where
o < s() 0 )
0 [
Then

0 m
U, =Wy, UQZ—W1S+W2:<O t).

Since (Uy, Us) is nonsingular, t(*~") is nonsingular. Let

(1, Vo) = (U1, Us) ( j ? ) ;

then

I m
V1:U1+U2: )
0 t

which is nonsingular. By (1), we have the theorem.
3. Equivalence of point-pairs

Definition Let (Z1,Z3) and (W7, W3) be two nonsingular symmetric pairs of

matrices. We define the rank of

(Z1, Z2)F(Wh,Wa)' = Z1/ W3 — ZoW]
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to be the arithmetic distance between the two points represented. Evidently, the
notion is independent of the choice of representation. Further, it is invariant under

symplectic transformations. In fact, let
(Z1,23) = Q(Z1,Z2)%, (W1, W3) = R(W1, W2)%,
then
(27, Z3)F(Wi W3 = Q(Z1, Zo)TFE (Wi, Wa)' R' = Q(Z1, Z2)F(W1, Wa)'R'.

In nonhomogeneous coordinates, the arithmetic distance between two symmetric
matrices W, Z is equal to the rank of W — Z.

Theorem 2  Two point-pairs are equivalent if and only if they have the same
arithmetic distance. What is the same thing: every point-pair with arithmetic distance
r s equivalent to

(1,0), (I.1L,),

™ o
I, = .
0 0

Proof By Theorem 1, we may assume that the point-pairs are of the form

where

(1,0), (Z1,2Z).

The arithmetic distance being r, it follows that Z5 is of rank r. We have two

nonsingular matrices P and ) such that

OZ,P = o0y _,
VLo o) T

maza<P 0>=mb>

Then

0o P

and
P10

Q(LO)< 0 P

) = QP I,0).

Since (T, I,) is a nonsingular symmetric pair, we have, consequently,
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where s is symmetric and p is nonsingular. Then

I g1 (r) 0
P Yoy =|((" Al
0 p! 0 I

Further
o) 0 I 0
o ge-n )T I=s 0\ | =00
0 0
and
I 0
(1,0) I—s5s 0 I = (1,0).
0 0
Since
I 0

I—-s5 0
[0
is symplectic, we have the result.
Definition The points (X7, X2) with singular X; are called points at infinity
(or symmetric matrices at infinity). Finite points are those with nonsingular X;.
Lemma  Any finite number of points may be carried simultaneously into finite

points by a symplectic transformation, if ® is the field of complex numbers.

Proof (1) Given any symmetric pair of matrices (T1,T53), we have a symplectic

P P
T Ty )

In fact, by Theorem 2, we have a symplectic T such that

matrix

(11, Ty) = Q(—1,0)%.

Let
(P17P2) = Qlil(ovl)g'

P P . Q’il 0 0 I T
T T, | 0 Q -1 0)7

which is evidently symplectic.

Then
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(2) For a fixed point (X7, X2), the manifold
det((X1, X2)8(Z1,22)') =0
is of dimension n(n + 1) — 2. Let
(A1, Az), -+, (L1, Lo)
be p given points. Then we have p manifolds
det((A1, 42)F(Z1,Z2)") =0, -+ ,det((L1, L2)F(Z1, Z2)") = 0.

In the space, there is a point (71, 7%) which is not on any one of the manifolds. The

transformation

—1
P P T, P
(Y1,Y2) = Q(X1, X>) < T > =Q(X1,X>) ( P

carries evidently the p points into finite points simultaneously.
4. Equivalence of triples of points

Definition 1 A subspace is said to be normal if it is equivalent to the subspace

formed by symmetric matrices (in nonhomogeneous coordinates) of the form

zZ& o
0 O(nfr) :

The least possible r is defined to be the rank of the subspace.

Definition 2 A triple of points is said to be of degeneracy d = n—rif it belongs
to a normal subspace of rank 7.

Evidently degeneracy is invariant under symplectic transformations.

Theorem 3 In the complex field, two triples of points are equivalent if and
only if they have the same degeneracy and the arithmetic distances between any two
corresponding pairs of points are equal.

Proof Evidently, if two triples are equivalent, they have the same degeneracy
and the arithmetic distances between any two corresponding pairs of points are equal.

We prove the converse in six steps.

(1) Every triple with arithmetic distances n, n, r is equivalent to

—I1™ 0
0, I, ( 0 0) (in nonhomogeneous coordinates)
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(notice that now the degeneracy is 0). We use (A4, B) to denote the arithmetic
distance between A and B. Let A, B, C be the three points of the triple. Then

r(A,B)=r(A,C) =n.
By Theorem 2, we may write in homogeneous coordinates
A=(1,0), B=(0,1), C=(Z,2).
Since r(A,C) = n and Z, is nonsingular, we may write C' as
(5, 1),

where S is a symmetric matrix of rank . We have a nonsingular matrix I" such that

I 0
ST =1, = ,
0 0

then
(U IT(1,0)
o (0 F1>= 0.1
(5,1) (Ir, I)

Thus the triple is equivalent to
(1,0), (0,I), (I1I).
Since (in the nonhomogeneous coordinate system)
0, I, -1,

is a triple with distances n, n, r, we have the theorem.

(2) Every triple of points with arithmetic distances n, s, t is equivalent to

—I® 0 0
0, I, 0 0 0 )
0 0 1@

where p+ ¢ = s, n—q=1t (obviously, s+t > n).

In fact, we may assume that

A= (1,0, B=(I1), C=(Z,2).
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We may determine two nonsingular matrices U, V such that

I o
UZyV = ,
0 0

where r is the rank of Z5. If we set

1—1
G \% 0 ’
Vvt v
U(I,0)G =UV'~Y(I,0),
UG =UV(I,I),

U(Zl,ZQ>G_<p,<”” 0))
0 0

imply that we may assume that

I o
Z1=P, Zy= .
0 0

Owing to the symmetry, we have

SO w
P = ;
0o T
where S is symmetric and 7" is nonsingular. Further, since
I —-wr! S w IM 0 \\ _ (f S" o 1M 0
0o T o 7 )L o0 o o 1)\ 0o o))
we may assume that
s 7m0
7y = , Zo = .
0 I 0 O
In the normal subspace of rank 7, the points (1), 00)), (1) 1)) (ST 1)) are, by

(1), equivalent to

—1 0
(r) o) (r) 1™ (r)
oo, oo, (s 0 )

Thus, we have, in nonhomogeneous coordinates,

_ 7P
7(r) 0 ) 0 I 0 0
, ; 0 o(r—p) 0
0 O(nfr) 0 I(nfr)
0

0 O(n—r)

the relations
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The transformation

A 0 0 0 A 0
7 — =W
0 I 0o [ 0 I

carries the three points to the required form.

(3) Now we are going to prove that any three points are equivalent to
A=0, B=b+-+by, C=c1+ - +?,

where b, and ¢, are unit matrices of degree (v), multiplied with a factor 1, 0, or —1.

(1) and (2) are special cases of this. We shall consider another special case with

0 M 0 N
,A:O7 B = ) C= )
M 0 N 0
0---0 J(m)
M = , N= , n=2m+1.
7(m) 0---0

They form a triple with distances 2m, 2m, 2m.

where

Now we are going to establish that there exists a symmetric matrix S such that
the transformation
W=2(SZ+1)"!

will carry the three points to

0 0 1 0
A= 0, B= (n—1) ’ C= (n—1) ’
0 B e

where B is nonsingular. In fact S is given by

1 00 -1 0
1 0 -1 00 0 O
0 0 O ) 00 0 0],
-1 0 1 -1 0 0 1 O

0 00 0 O

and so on. The general form may be obtained easily. Applying the results obtained
in (2) to
O(nfl) Bin—l) Cfn—l)

@ + and 3’ denote direct sums.
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we have the conclusion.
(4) Let B, C be a nonsingular pair of symmetric matrices (in the ordinary sense),

that is, we have A and p such that
det(AB + uC') # 0.

Suppose C' is nonsingular; the conclusion announced in (3) is true by (2). Otherwise
(X #0) we have T" such that
I"(AB + pC) =1,
(r)

C 0
I'Cr = ( (1) 0 ) , C’l(r) nonsingular.

Then

M et o
AIVBT = e .
0 I(nfr)

Applying the results of (2) to

1 r T T
0, j\(I( ) —,qu ))7 Cf )
and
0 71[(” M0
? )\ Y )

we have the result announced in (3).

(5) Finally, for any pair of symmetric matrices (cf. the lemma of §3)
B, C,
we have a nonsingular matrix I" such that
BT =by+ - +by
and
I'ClY =ci + -+ +cn,

where
(by,cy)

is either the pair discussed in (4) or the pair discussed in (3), hence the results in (3).
(6) By a rearrangement and some evident modifications, for a triple of points

with degeneracy t, we have
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A =0 10@ L0 L0 100,
B=1® 1 0@ 4 1) 3 16) 1 o)
C=—1P 41 1@ ;o0 L1 Lot

which is the only possible form. The arithmetic distances between two points are
given by

a=r(B,C)=p+q+r,

b=7r(C,A)=p+q+s,

c=r(A,B)=p+r+s.
Thus, for given t, a, b, ¢, if the equations are soluble, the solution is unique. We have
therefore the theorem.

The conditions for solubility are

n—t>a, b, c,

a+b+c>2(n—t). (1)

In terms of a “triangle” we have the following theorem.
Theorem 4 A triangle of degeneracy t with sides a, b, ¢ exists if and only if
(1) holds. If it exists, it is unique apart from equivalence.

Incidentally, we have
a+bz22n—t)—c>c,

equality holds if and only if c=a+b=mn —1t.

The “triangle-relation”
a+b>c, b+c>a, cH+a=b

does not guarantee the existence of triangles with a given degeneracy, for example,
n=2,t=0,a=>b=c=1. But we have the following theorem.
Theorem 5  Given the lengths of three sides a, b, ¢ (< n), where the sum of

every two is greater than the third one, there are A non-equivalent triangles, where

N [(a+b+c)/2] —max(a, b, ) +1, forn>[(a+b+c)/2]P,
" | n—max(a, b, c)+1, forn < [(a+b+c)/2].

Proof Froma+b>c,b+c>a,c+a>b, we have

@ [z] denotes the integral part of .
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a+ b+ c > 2max(a, b, ¢).
There always exists a ¢ such that
a+b+c>2(n—t)>2max(a, b, c).

Then
max(0, n — [(a + b+ ¢)/2]) <t < n — max(a, b, ¢).
Thus, the number of ¢’s is equal to
n —max(a, b, ¢) —max(0, n — [(a+b+¢)/2]) +1
=min(n, [(a + b+ ¢)/2]) — max(a, b, ¢) + 1.
Corollary 1  If one of the sides is of length n, the triangle is unique.

Corollary 2 If the sum of two sides is equal to the third, then the triangle is

unique.
5. Equivalence of quadruples of points

Definition Let 71, Z5, Z3, Z, be four points in the nonhomogeneous coordinate-

system. The matrix
(Z1 — Z3)(Z1 — Za) ™ (Zo — Z4)(Zo — Z3) ™"
is defined to be the cross-ratio-matrix of the four points, and it is denoted by
(Z1, Za; Zs, Z4)~

It is defined only when Z; — Z, and Z5 — Z3 are nonsingular.
In the homogeneous coordinate-system, we let P, P, P3, P4 be four points with

coordinates
(leyrl)a (XQa}/Q)v (X37Y3)a (X4aY4)

In terms of
(Pi, P) = (X;,Y5)3(X:, Y3),

the cross-ratio-matrix is defined by
(Py, Py; Ps, Py) = (Py, P3)(Py, Py) ™ (P, Py)(Py, P3) ™",

provided that it is not meaningless.
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Let P be the point with coordinates
where ¥ is symplectic; then
<Pi*’ P;> :(X;7 1/]*)&()(1*’ }/z*)l
=Q;(X;,Y;)3(X:,Y:)'Q; = Q;i(P;, P)Q;.
Therefore
(P, P3; Py, PY) =(Pr, Py )(Py, PY) (P, Py)(Py, Py) ™!
=Qs(Py, P3)Q1 Q' (P, P)QuQy  (Pe, P)QAQ'5 (Pa, P) Q5
=Qs3(P1, Pa; P, P1)Q3 7,
and we now state the following theorem.
Theorem 6 In an algebraically closed field, two quadruples of points, no two

of the points having arithmetic distance less than n, are equivalent if and only if their
cross-ratio-matrices are equivalent.
In order to prove Theorem 6, we need to establish the following theorem.
Theorem 7  In the algebraically closed field, any quadruple of points, no two

of which have arithmetic distance less than n, is equivalent to

0, oo, ZI Qg , Z/ bz‘,

1<igy 1<igy
where
0 0 X\
1 A1
a; = y bl 5 )\z 7é 0 or 1.
1 -~ 0 0 A1 oo 0 0

Proof In homogeneous coordinates, we may write the four points as
(OaI)a (I7O)a (ZlaZ2)7 (W17W2)'

Since no two of the arithmetic distances are less than ny, Z1, Zo, W1, W5 are all non-

singular. We may write them in the nonhomogeneous coordinates as
0, o, Sl, Sg.

We have a nonsingular matrix 7" such that

TSlT/ = Z’ai, TSQT/ = Z’bz
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The theorem follows.

The proof of Theorem 6 is now evident.

Remark The equivalence of quadruples in any field seems to be more difficult.
The condition in Theorem 6 is insufficient for the real case (a signature system is
required).

Definition We define a quadruple of points satisfying
(Pr, Po; P3, Py) = —1

to be a harmonic range.

Evidently a harmonic range is invariant under a symplectic transformation.
6. Von Staudt’s theorem in the complex number field

Now we let ® be the field formed by complex numbers.

We use Z to denote the conjugate complex matrix of Z. The transformation
(W, Wa) = Q(Z1,Z2)%

carrying a symmetric pair (W7, Ws) into a symmetric pair (Z1, Zs) is called anti-
symplectic if @ is nonsingular and ¥ symplectic.

Theorem 8 A transformation satisfying the following conditions:

(1) one-to-one and continuous;

(2) carrying symmetric matrices into symmetric matrices;

(3) keeping arithmetic distance invariant

(4) keeping the harmonic relation invariant
1s either a symplectic or an anti-symplectic transformation.

Proof Let I' be the transformation considered. Taking three points A, B,C'
(symmetric matrices), no two of which have arithmetic distance less than n, let
A1, By, Cy be their images. By (3), the arithmetic distance between any two of
A, By, Cp is n. Let T; and %5 be two symplectic transformations carrying respec-
tively A, B, C and A;, By, C7 into 0, I, oo, in accordance with Theorem 3. Then,

without loss of generality, we may assume that
0=T(0), I=T(), oo=T(c0).

Since

Za Zla (Z+Z1)/27 oo

form a harmonic range, we have

0(Z)+T(Z1) =T(Z + Zy).
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Consequently,
I(rz)=rI'(2)

for all rational r. By continuity, this holds for all real r.
Now we introduce the following notations:
1, ifs=t=1,

Eii = (pst)7 Pst = {

0, otherwise

and
1, ifs=i,t=jors=jt=1,

0, otherwise.

Eij = (q.st)7 qst = {

Let
[D(Ei;) = M;.

Since M; is of rank 1 and symmetric, we have

M; = (Nt 5 Ain) (Nizs =+ 5 Ain)-

Let
A= (Aij)
Then
I=T(I)=) T(Eq)=)Y_ M,
i=1 i=1
= Z(Aila e 7)\in)/(>\i17 Tty )‘ln)
=1
= Z /\zj >\’Lk (Z /\ZJ >\zk>
=1
=A'A.

That is, A is an orthogonal matrix
(/\ilv . 7/\m)A’ = (51'1’ R 751.”)7
where 9;; is Kronecker’s delta. Thus
AT (E;;)N = Ej;.

Let
A(Z) = AT(Z)N,

then A has the same property as I, that is,





