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Preface

This book is the first volume of the Lecture Series of Modern Number Theory, which
is devoted to publishing peer-reviewed workshop lecture notes and the proceedings
of conferences on all branches of contemporary number theory research. The series
intends to target number theory researchers and students, including both experts
and non-experts of the covered subjects.

This book includes notes on five lectures given at p-adic Beijing 2011, a workshop
held from June 12 to 21, 2011 at the Morningside Center of Mathematics, Beijing,
China that was organized by Tian Ye of Morningside Center of Mathematics and Ye
Yangbo of the University of Iowa. The speakers at the workshop include:

Corinne Blondel of Institut de Mathématiques de Jussieu;
Colin Bushnell of King’s College;
Daniel File of the University of Iowa;
Muthukrishinan Krishinamurthy of the University of Iowa;
David Manderscheid of Ohio State University;
Vincent Sécherre of l’Université de Versailles Saint-Quentin, and
Freydoon Shahidi of Purdue University.
As suggested by its title, this volume contains lectures on representation theory

of p-adic groups. For example, Colin J. Bushnell’s lecture notes attempt to derive
a complete list of the irreducible cuspidal complex representations of the group
GLn(F ), where F is a non-Archimedean local field. Here, complex representations
refer to representations of GLn(F ) on complex vector spaces. The last part of his
notes explores the relationship of complex representations with the local Langlands
correspondence.

Corinne Blondel’s notes have a more general setting. The groups are assumed to
be reductive p-adic groups, and the representations are taken on vector spaces over a
commutative field R. After an introduction of this general setup, the characteristic
of R is assumed to be zero or positive but not equal to p. The notes prove a major
theorem: that smooth irreducible representations of a reductive p-adic group over a
field of characteristic not equal to p are admissible.

In the notes by Vincent Sécherre, the group is again the GLn over a non-
Archimedean locally compact field F with residue characteristic p. The representa-
tions are taken on vector spaces over an algebraically closed field R. This includes
the case of R being the algebraic closure of a finite field of characteristic �. The
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notes pay special attention to whether � is or is not equal to p. The main theorem
proved in the notes is that the category of all smooth representations of GLn(F ) on
R-vector spaces decomposes into a product of indecomposable summands.

The theory of theta correspondence is globally a general construction of auto-
morphic forms of groups over algebraic number fields, and locally a general cor-
respondence between admissible representations of two groups of a reductive dual
pair. The theory has its origin from classical theta series which are modular forms.
David Manderscheid’s lecture notes provide an introduction to reductive dual pairs
and local theta correspondence.

The Langlands-Shahidi method is a powerful method that uses the Eisenstein
series to obtain functional equations and analytic properties of certain automor-
phic L-functions. These L-functions are those appear in constant terms and other
Fourier coefficients of the Eisenstein series. The notes by Freydoon Shahidi prove
the main results of Langlands on analytic properties of the Eisenstein series. These
notes provide the part of the theory of the Eisenstein series that is needed in the
author’s Eisenstein Series and Automorphic L-Functions to develop the theory of
automorphic L-functions.

The editors of this volume would like to express their sincere thanks to the
authors for their contributions, and to the referees for their valuable comments and
suggestions. Heartfelt gratitude is due to the Morningside Center of Mathematics
for their grant, organization, and facility support. We are also greatly indebted to
Jing Ma of Jilin University who compiled the index for this volume and to Zhao
Yanchao of Science Press for the careful preparation of this book for publication.

Ye Yangbo
Iowa City, Iowa

March, 2013
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1. Arithmetic of Cuspidal Representations

Colin J. Bushnell∗

We aim to write down a complete list of the irreducible cuspidal (complex) represen-
tations of the group GLn(F ), where F is a non-Archimedean local field. We indicate
how this list relates to the local Langlands correspondence.

The text is a lightly edited and expanded version of the notes distributed at the
Summer School and its tone remains informal. It relies for background on some of
the other courses. In the earlier parts, the useful forms of several results emerged
gradually and are not so easy to track down in the literature. We have therefore
paid them a bit more attention but, otherwise, proofs are rather rare. The core of
the subject is fully exposed in [5] so, beyond the first half of the notes, we have given
only an introduction to the definitions and a high level overview of the argument. We
have omitted entirely one of the main themes of [5], concerned with non-vanishing of
Jacquet modules: while crucial to the arguments, it does not enter visibly into the
description of the cuspidal spectrum on which we focus here. The last part of the
notes, concerning the relation with the Langlands correspondence, represents a work
in progress and relies on a substantial literature. The area is covered more carefully,
with fuller references, in a parallel set of notes [2] which the interested reader might
find helpful.

As indicated, we give little by way of detailed references, only some “further
reading”. Beyond [5], many of the core concepts originate in two very old papers
[1], [6]. These remain accessible and helpful to readers new to the area.

1.1 Cuspidal representations by induction

As a starting point, we review a standard method of producing irreducible cuspidal
representations. Much of the background we use here may be found in other papers
in this volume. The reader may also find helpful the early pages of [4].

∗ The author wishes to record his deep appreciation of the organizers, their supporters and

students for making the Summer School a stimulating and supremely enjoyable experience.

Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, UK.

colin.bushnell@kcl.ac.uk.



2 1. Arithmetic of Cuspidal Representations

1.1.1 Background and notation

Throughout, F is a non-Archimedean local field, with discrete valuation ring oF and
residue field kF = oF /pF . We set UF = U0

F = o×F and Um
F = 1+pm

F , m � 1.
We usually work with the general linear group G = GLn(F ), and the full matrix

algebra A = Mn(F ). Sometimes, it is better to think of G as AutF (W ), where W
is an F -vector space of dimension n, and then A = EndF (W ).

If (π, V ) is a smooth representation of G, then (π̌, V̌ ) denotes the smooth dual of
(π, V ). A coefficient of π is a function G→ C that is a finite linear combination of
functions g �→ 〈v̌, π(g)v〉, for v ∈ V and v̌ ∈ V̌ .

If K is a compact open subgroup of G, then V K is the space of v ∈ V such that
π(k)v = v, k ∈ K.

Suppose that (π, V ) is irreducible. Thus (π, V ) is admissible: dimV K < ∞, for
all K. Moreover, (π̌, V̌ ) is irreducible and admissible. The second dual (π̌, V̌ )∨ is
isomorphic to (π, V ). One says that (π, V ) is cuspidal if all coefficients of π are
compactly supported modulo the centre F× of G. Indeed, if one non-zero coefficient
has this property, so do all.

We return to a general smooth representation (π, V ) of G. Let P be a parabolic
subgroup of G. Thus, thinking of G as AutF (W ), P is the stabilizer of a flag of
subspaces

W = W0 ⊃W1 ⊃ · · · ⊃Wr = {0}.

The unipotent radical N of P is the subgroup of P consisting of elements acting
trivially on all quotients Wi/Wi+1, 0 � i < r. The Jacquet module VN of (π, V ) at
N is the maximal quotient of V on which N acts trivially: it is the quotient of V
by the subspace spanned by all v−π(n)v, v ∈ V , n ∈ N .

Key fact. Let (π, V ) be an irreducible smooth representation of G. The following
are equivalent:

(1) The representation (π, V ) is cuspidal.
(2) If P is a proper parabolic subgroup of G, then the Jacquet module VN at the

unipotent radical N of P is trivial.

1.1.2 Intertwining and Hecke algebras

Let K be a compact open subgroup of G, and (ρ,W ) a smooth representation of K.
Thus ρ is semisimple: it is a direct sum of irreducible representations, the irreducible
factors being unique up to equivalence and permutation.

If g ∈ G, write Kg = g−1Kg and let ρg be the representation x �→ ρ(gxg−1) of
Kg.
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For i = 1, 2, let Ki be a compact open subgroup of G and (ρi,Wi) a smooth
representation of Ki. Let g ∈ G. We say g intertwines ρ1 with ρ2 if

HomKg
1∩K2

(ρg
1, ρ2) 	= 0.

In other words, the (semisimple) representations ρg
1|Kg

1∩K2 , ρ2|Kg
1∩K2 have an irre-

ducible component in common. This property depends only on the double coset
K1gK2. Note that, if g intertwines ρ1 with ρ2, then g−1 intertwines ρ2 with ρ1.

Remark. Suppose that the representations ρi above are both irreducible. Let
(π, V ) be an irreducible smooth representation of G. Say π contains ρi if HomKi(ρi,

π) 	= 0. If there exists an irreducible representation π containing both ρi, then ρ1

intertwines with ρ2 in G.

We take a compact open subgroup K of G, and an irreducible smooth represen-
tation (ρ,W ) of G. Let H(G, ρ) be the space of compactly supported functions

φ : G −→ EndC(W ),

φ(k1gk2) = ρ(k1) ◦ φ(g) ◦ ρ(k2),

for g ∈ G and k1, k2 ∈ K.

Lemma. Let g ∈ G. The following are equivalent:
(1) g intertwines ρ.
(2) there exists φ ∈ H(G, ρ) such that φ(g) 	= 0.

Indeed, for g ∈ G, the space of functions in H(G, ρ) with support KgK is canonically
isomorphic to HomKg∩K(ρg, ρ).

The space H(G, ρ) is a C-algebra under convolution relative to a Haar measure
μG on G. The function eρ, with support K and such that

eρ(k) = μG(K)−1ρ(k), k ∈ K,
provides the unit element of H(G, ρ). The algebra H(G, ρ) is the ρ-spherical Hecke
algebra of G.

Comment. In the literature, our H(G, ρ) is sometimes viewed as H(G, ρ̌). Each
viewpoint has its own advantages and disadvantages. Whichever choice one makes,
H(G, ρ̌) is linearly anti-isomorphic to H(G, ρ).

1.1.3 Compact induction

Let (ρ,W ) be a smooth representation of the compact open subgroup K of G. We
form the compactly induced representation c-IndG

Kρ in the usual manner. The vector
space underlying this representation consists of all compactly supported functions
f : G→W such that
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f(kg) = ρ(k)f(g), g ∈ G, k ∈ K,
and the group G acts by right translation. It is necessary to remember that we have
a canonical map W → c-Indρ: a vector w ∈W gets mapped to the function φ0

w with
support K such that φ0

w(1G) = w.
Suppose that (ρ,W ) is irreducible. Choose a Haar measure μG on G. For f ∈

c-Indρ and φ ∈ H(G, ρ), the function

φ ∗ f(g) =
∫

G

φ(x)f(x−1g)dμG(x),

again lies in c-Indρ. This gives us an algebra homomorphism

H(G, ρ) −→ EndG(c-Indρ). (1.1)

Proposition. The map (1.1) is an isomorphism.

Let (π, V ) be a smooth representation of G. Frobenius Reciprocity gives

HomK(ρ, π) = HomG(c-Indρ, π).

The space Vρ = HomK(ρ, π) thus becomes a rightH(G, ρ)-module: if Φ : c-Indρ→ π

is a G-homomorphism and φ ∈ H(G, ρ), then Φφ is the map sending f to Φ(φ ∗ f),
f ∈ c-Indρ. The following is good to know, but we will not use it openly.

Fact. Suppose that (π, V ) is irreducible and contains ρ. The H(G, ρ)-module Vρ

is simple. The process (π, V ) �→ Vρ gives a bijection between the set of equivalence
classes of irreducible, smooth representations of G which contain ρ and the set of
isomorphism classes of irreducible H(G, ρ)-modules.

We use this discussion in a slightly different context. We fix a smooth character
ω of the centre F× of G. We consider open subgroups K of G, containing F×

and such that K/F× is compact. Nothing then changes provided we consider only
representations (ρ,W ) of K such that ρ(x)w = ω(x)w, w ∈ W , x ∈ F×, and
representations of G with the same property.

Theorem. Let K be an open subgroup of G, containing and compact modulo F×.
Let (ρ,W ) be an irreducible smooth representation of K and suppose that H(G, ρ) ∼=
C as C-algebra. The representation c-IndG

Kρ of G is then irreducible and cuspidal.

Comment. If c-Indρ is irreducible, then surely H(G, ρ) ∼= EndG(c-Indρ) must
reduce to C (Schur’s Lemma). The hypothesis amounts to the following: g ∈ G

intertwines ρ if and only if g ∈ K.

Proof. Let us write c-Indρ = (π, V ). There is a unique character ω of F× such that
ρ(z)w = ω(z)w, for z ∈ F× and w ∈ W . We then have π(z)v = ω(z)v, for v ∈ V .
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In particular, V is semisimple as a representation of K. Let V ρ be the ρ-isotypic
component of V : this is the sum of all irreducible K-subspaces equivalent to ρ. So,

HomK(W,V ρ) = HomK(W,V ) ∼= HomG(V, V ) = EndG(V ) ∼= H(G, ρ).

However, dimH(G, ρ) = 1, so V ρ ∼= W . We may therefore identify V ρ: it is the
canonical image of W in V . It consists of all functions v ∈ V with support K. Let
U be a non-zero G-subspace of V . Therefore

0 	= HomG(U, V ) ⊂ HomG(U, IndG
Kρ) ∼= HomK(U,W ).

This says Uρ = U ∩V ρ 	= 0. Since V ρ is irreducible as K-space, Uρ = V ρ. However,
V ρ generates V as G-space, so U = V .

The G-space V = c-Indρ is irreducible, and so it is admissible. The contragre-
dient (π̌, V̌ ) ∼= IndG

K ρ̌ is therefore irreducible. We choose w ∈ W , and let v ∈ V

be the function with support K such that v(1) = w. We choose w̌ ∈ W̌ such that
〈w̌, w〉 	= 0. We define v̌ ∈ IndG

K ρ̌ in the same way: its support is K and v̌(1) = w̌.
For g ∈ G, we have

〈v̌, π(g)v〉 =
∫

G/F×
〈v̌(x), v(xg)〉dμ̇(x).

The integrand vanishes unless x ∈ K. For x ∈ K, it vanishes unless g ∈ K. The
support of this coefficient is therefore contained in K. For g = 1, it reduces to
μ̇(K/F×)〈w̌, w〉 	= 0.

We conclude that c-Indρ has one non-zero coefficient which is compactly sup-
ported modulo F×. Since c-Indρ is irreducible, all coefficients have this property,
and so c-Indρ is cuspidal.

Remark. In this situation, HomK(ρ, c-Indρ) ∼= EndG(c-Indρ) ∼= C. Therefore ρ
occurs in c-Indρ with multiplicity one.

1.1.4 An example

Let K0 = GLn(oF ): this is a maximal compact subgroup of G = GLn(F ). Let
K = F×K0 (which is the G-normalizer of K0). We also need the normal subgroup

K1 = 1 + pFMn(oF )

of K0. In particular, G = K0/K1
∼= GLn(kF ). Let λ̃ be an irreducible cuspidal

representation of G: this means that λ̃ does not contain the trivial character of N ,
for the unipotent radical N of a proper parabolic subgroup of G. Let λ be the
inflation of λ̃ to an irreducible representation of K0. Let g ∈ G intertwine λ. Only
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the double coset K0gK0 matters, so we may put g in the following canonical form.
We choose a prime element � of F , and then g is the diagonal matrix with entries
�a1 , �a2 , · · · , �an , where the ai are integers such that a1 � a2 � · · · � an. If all
the ai are equal, then g ∈ K = F×K0. We therefore assume the contrary: there
exists i, 1 � i � n−1, such that ai < ai+1. The group Kg

0 ∩K0 therefore contains
the group of block matrices

N =
(
Ii 0
oF In−i

)
.

The representation λg is trivial on this group, but λ does not contain its trivial
character. Thus g cannot intertwine λ.

Let Λ be any representation of K such that Λ|K0
∼= λ. Such a representation

surely exists. Any g ∈ G which intertwines Λ must also intertwine λ, and so lie in
K. In other words, c-IndG

KΛ is an irreducible, cuspidal representation of G.
Looking more carefully at this argument, we get the following.

Proposition. Let λ1, λ2 be irreducible representations of K0 trivial on K1, and
suppose that λ1 is the inflation of a cuspidal representation of K0/K1. The repre-
sentations λ1, λ2 intertwine in G if and only if λ2

∼= λ1.

This tells us a little more. Take Λ as before, so that λ = Λ|K0 is inflated from
cuspidal. The group K stabilizes the space of K1-fixed points in c-IndΛ, which
therefore carries a natural representation Λ1 of K/K1. The intertwining property
tells us that any irreducible component of Λ1 is equivalent to Λ. Frobenius reciprocity
says that Λ occurs in c-IndΛ with multiplicity one, so Λ1 is irreducible and equivalent
to Λ.

1.1.5 A broader context

Let (π, V ) be an irreducible smooth representation of G, and suppose that V K1 	= 0.
This space of K1-fixed vectors is stable under π(K), and so carries a representation
ρ of K. This is smooth, of finite dimension. Consider an irreducible component Λ
of ρ. If Λ|K0 is inflated from cuspidal, then π ∼= c-IndG

KΛ and Λ = ρ.
The only other possibility is that λ = Λ|K0 is not inflated from cuspidal, for any

irreducible component Λ of ρ. A key step in the general development is that, in this
case, π has a non-trivial Jacquet module and so cannot be cuspidal. This argument
takes some time and space, and we will not enter into it. However, once accepted,
we have shown:

Corollary. Let (π, V ) be an irreducible cuspidal representation of G such that
V K1 	= 0. There is a unique irreducible representation Λ of K, trivial on K1 and
with Λ|K0 inflated from cuspidal, such that π ∼= c-IndΛ.
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1.2 Lattices, orders and strata

We introduce some general apparatus, giving us a good supply of compact open
subgroups of G = GLn(F ) and a method of writing down, at least partially, a lot of
representations with which we can work. This leads us to another family of examples
of cuspidal representations, constructed by induction.

1.2.1 Lattices and orders

Let V be an F -vector space of finite dimension n. We set A = EndF (V ) ∼= Mn(F )
and G = AutF (V ) ∼= GLn(F ). An oF -lattice in V is a finitely generated oF -
submodule L of V which spans V over F .

Lemma. Let L be an oF -submodule of V . The module L is an oF -lattice in V if
and only if there is an F -basis {v1, v2, · · · , vn} of V which generates L as oF -module.
In particular, any oF -lattice in V is free of rank n.

An oF -order in A is an oF -lattice a in A which is also a subring of A containing
1. If a is an oF -order in A, an a-lattice in V is an oF -lattice L in V such that aL = L.

If L is an oF -lattice in V , we may form

m(L) = {x ∈ A : xL ⊂ L}.

If V = Fn and L = on
F , then m(L) = Mn(oF ).

Proposition. (1) Let L be an oF -lattice in V . The set m(L) is an oF -order in A,
and is isomorphic to Mn(oF ).

(2) If L, L′ are oF -lattices in V , then m(L) is G-conjugate to m(L′).
(3) Let a be an oF -order in A. There exists an oF -lattice L in V such that

a ⊂ m(L).

Proof. The first assertion follows from the lemma, as does the second. For the
third, let L0 be some oF -lattice in V , and consider the a-module L = aL0 generated
by L0. This is an a-lattice and a ⊂ m(L).

Orders of the form m(L) are called maximal orders, for the following reason.

Exercise. Let L be an oF -lattice in V and set m = m(L). Let L′ be some m-lattice
in V . Show that L′ = xL, for some x ∈ F×. Deduce that, if m, m′ are maximal
orders in A, then m ⊂ m′ if and only if m = m′.

1.2.2 Lattice chains

An oF -lattice chain in V is a non-empty set L of oF -lattices in V which is linearly
ordered under inclusion and such that xL ∈ L for any x ∈ F× and L ∈ L. One may
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number the elements of L,

L = {Li : i ∈ Z},
so that Li � Li+1, for all i. Stability under scalar multiplication then amounts to:

Lemma. There exists an integer e � 1 such that �Li = Li+e, for i ∈ Z and any
prime element � of F .

The integer e = eF (L) is the F -period of L.
We have

L0 ⊃ L1 ⊃ · · · ⊃ Le−1 ⊃ Le = �L0.

The quotients Li/Le, 0 � i � e, provide a flag of subspaces of the kF -space L0/Le
∼=

kn
F . Consequently, e(L) � n. The lattice chain L is thus specified by choice of a

base point L0 and a flag of kF -subspaces of L0/pFL0
∼= kn

F .
Given the lattice chain L = {Li}, we set

a(L) = {x ∈ A : xLi ⊂ Li : i ∈ Z}
=

⋂
0�i�e−1

m(Li).

The set a(L) is a sub-ring of A, and indeed an oF -order in A (such orders are
the hereditary orders in A). One may describe a(L) quite concretely. Let di =
dimkF Li/Li+1. We choose a kF -basis of L0/Le so that the stabilizer of the flag
{Li/Le : 0 � i < e} is a standard parabolic subgroup of upper triangular block
matrices. The inverse image in L0 of this basis is an oF -basis of L0 (and an F -basis
of V ). Relative to this basis, a(L) becomes identified with the ring of e × e block
matrices

(
aij

)
0�i,j<e

, in which the ij-block has size di×dj and entries in oF if i � j,
in pF otherwise. Pictorially,

a(L) =

⎛
⎜⎜⎜⎜⎜⎜⎝

oF oF oF . . . . . . oF

pF oF oF oF . . . oF

pF pF oF oF . . . oF
...

. . . . . . . . .
...

pF . . . . . . pF oF oF

pF . . . . . . . . . pF oF

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We may similarly define, for r ∈ Z,

ar(L) = {x ∈ A : xLi ⊂ Li+r, 0 � i < e}.

This is a two-sided a-module, finitely generated over oF . For r � 1, it is an ideal of
a. In particular,
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pa = a1(L) =

⎛
⎜⎜⎜⎜⎜⎜⎝

pF oF oF . . . . . . oF

pF pF oF oF . . . oF

pF pF pF oF . . . oF
...

. . . . . . . . .
...

pF . . . . . . pF pF oF

pF . . . . . . . . . pF pF

⎞
⎟⎟⎟⎟⎟⎟⎠
,

is the Jacobson radical of a: it is a topologically nilpotent ideal of a and a/pa
∼=∏

0�i<e Mdi(kF ) is semisimple. We prefer the notation

pr
a = ar(L), r ∈ Z,

noting that pr
ap
−r
a = a. We often write pa = rad a.

While we defined a in terms of the lattice chain L, the ring a determines the
lattice chain, up to a change in the numbering:

Proposition. If M is an a-lattice in V , then M ∈ L. In particular, L is the set of
all a(L)-lattices in V .

In this version, the period eF (L) = e is given by pF a = pe
a (we therefore write

e = eF (a) when thinking this way).

1.2.3 Multiplicative structures

Let a be a hereditary oF -order in A, with Jacobson radical p and attached to a
lattice chain

L = {Li : i ∈ Z}, di = dimkF Li/Li+1.

Let e = eF (L). We set

Ua = U0
a = a×, Uk

a = 1+pk, k � 1.

(The groups Ua are the parahoric subgroups of G). We will also need the group

Ka = {x ∈ G : x−1ax = a}
= {x ∈ G : xL ∈ L, L ∈ L} = AutF (L).

The groups U j
a are compact open subgroups of G. The group Ka contains F×Ua,

with index � e � n, and so is compact modulo the centre F× of G. Observe that
each U j

a , j � 0, is normal in Ka. Indeed, Ka is the G-normalizer of any one of the
U j

a , j � 0.
We have

U0
a/U

1
a
∼=
∏

0�i<e

AutkF (Li/Li+1) ∼=
∏

0�i<e

GLdi(kF ),
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while
U j

a/U
j+1
a
∼= pj/pj+1, j � 1.

More generally, we have an isomorphism

pj/pk −→ U j
a/U

k
a ,

x �−→ 1+x,

whenever 1 � j < k � 2j.

Special case. Say that the lattice chain L = {Li : i ∈ Z} is uniform if the
parameter di = dimkF Li/Li+1 is constant, independent of i. There then exists
x ∈ Ka such that xLi = Li+1, for all i. Indeed, p = xa = ax, for any such x.
Consequently, one says that the hereditary order attached to a uniform lattice chain
is a principal order. One may show that the maximal compact modċentre subgroups
of G are the groups Ka, where a ranges over the principal orders in A. The induction
theorem of Chapter I suggests that we need to find lots of interesting representations
of Ka, where a is a principal order. We approach this in stages.

1.2.4 Duality

We give a simple procedure for constructing characters of the groups U j
a , j � 1.

Before starting, we recall a fact about local fields. Let F̂ be the group of smooth
characters of F . Thus F̂ ∼= F , as follows. Choose an element ψ ∈ F̂ , ψ 	= 1.
For a ∈ F , let aψ denote the character x �→ ψ(ax). The map a �→ aψ is then an
isomorphism F → F̂ .

We choose a character ψF of F , ψF 	= 1. It is convenient to take ψF so that
oF 	⊂ Ker ψF ⊃ pF : one says that ψF has level one. Everything we do depends on
this choice, but only in a minor way.

We set ψA = ψF ◦ trA, where trA : A → F is the matrix trace. Thus ψA is a
character of A satisfying a 	⊂ Ker trA ⊃ p (as one sees readily from the block matrix
picture). For a ∈ A, we may likewise define aψA ∈ Â by aψA(x) = ψA(ax), to get an
isomorphism A ∼= Â. Here, various elements a may have very different properties,
reflected in varying properties of the characters aψA.

Proposition. Let 0 � j < k � 2j+1 be integers, let a ∈ p−k. The map

ψA,a : 1+x �−→ ψA(ax), x ∈ pj,

defines a character of U j+1
a trivial on Uk+1

a . The map

p−k/p−j −→ (
U j+1

a /Uk+1
a

)∧
,

a �−→ ψA,a,
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is an isomorphism.

The point here is that

p1−m = {x ∈ A : ψA(xpm) = {1}},

as one sees easily from the block matrix pictures. The algebraic properties of the
element a are reflected in the intertwining properties of the character ψA,a. The rôle
of ψF is straightforward. If ψ′F is another character of level one, there exists u ∈ UF

such that ψ′F (x) = ψF (ux), x ∈ F . We then have ψA,a = ψ′A,u−1a.

1.2.5 Strata and intertwining

A stratum in A is a quadruple [a, k, j, b] where
(1) a is a hereditary oF -order in A, with Jacobson radical p.
(2) k > j are integers, and
(3) b ∈ p−k.

The stratum [a, k, j, b] determines the coset b+p−j . We say two strata are equivalent
if they define the same cosets.

Let g ∈ G; we say that g intertwines the stratum [a, k, j, b] if

g−1(b+p−j)g ∩ b+p−j 	= ∅.

The point is:

Proposition. Let [a, k, j, b] be a stratum in A such that 0 �
[
k

2

]
� j < k, and let

g ∈ G. The element g intertwines the stratum [a, k, j, b] if and only if it intertwines
the character ψA,b of U j+1

a .

The proposition applies equally to elements which intertwine one stratum with
another, and to the associated characters.

Strata provide a convenient way of describing characters of certain compact open
subgroups of G. If π is an irreducible smooth representation of G, we say that π
contains the stratum [a, k, j, b] if it contains the character ψA,b of U j+1

a /Uk+1
a .

1.2.6 Field extensions

Let E/F be a finite field extension, of degree d. Let W be an E-vector space of
finite dimension m, and write B = EndE(W ). Let L be an oE-lattice chain in W .
Thus

b = aE(L) = {x ∈ B : xL ⊂ L, L ∈ L}
is a hereditary oE-order in B. However, we may view W as an F -vector space of
dimension n = md, and then L provides an oF -lattice chain in W and hence a
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hereditary oF -order a = aF (L) in A = EndF (W ). We then have, by definition,
b = a ∩B and, more generally,

qj = pj ∩B, j ∈ Z,

where q = rad b and p = rad a are the respective Jacobson radicals. Further,

eF (L) = e(E|F )eE(L).

For x ∈ E× and L ∈ L, we have xL ∈ L, so E× ⊂ Ka.
Looking at it the other way round, we can take a hereditary oF -order a = a(L)

in A = EndF (V ), for some finite-dimensional F -vector space V and a field extension
E/F inside A. We say that a is E-pure if E× ⊂ Ka. This is the same situation
as before: the vector space V is an E-space via the inclusion E → A while B =
EndE(V ) is the A-centralizer of E. Every L ∈ L is then an oE-lattice and L is an
E-lattice chain. Moreover, b = a∩B is the hereditary oE-order in B attached to L.

Example. There is a particular case worth remembering. We take a field extension
E/F of finite degree d, and consider the E-vector space E of dimension one. There
is only one oE-lattice chain in E, namely {pj

E}j∈Z. This gives a principal order a(E)
in EndF (E). This is surely E-pure, of F -period e(E|F ), and its radical is �Ea(E),
for any prime element �E of E. The centralizer of E in EndF (E) is E itself, and
a(E) ∩E = oE .

1.2.7 Minimal elements

Let E/F be a finite field extension, and suppose E = F [α], α ∈ E×. We say that α
is minimal over F if it satisfies two conditions. First, if υ = υE(α) and e = e(E|F ),
then

gcd(υ, e) = 1.

To state the second, we choose a prime element�F of F and form α0 = �−υ
F αe ∈ UE .

Let α̃0 be the image of α0 in kE . The required condition is

kE = kF [α̃0].

Exercise. Take A = EndF (V ) as usual, and let α ∈ A such that F [α] is a field.
Suppose that α is minimal over F . Let a be a hereditary order in A such that
α ∈ Ka. Show that a is F [α]-pure.

We go back to the hereditary order a(E), as in §1.2.6 Example, and write p(E) =
rad a(E).

Proposition 1. Let α ∈ E be minimal over F and satisfy E = F [α].
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(1) Let α′ ∈ αU1
a(E). The algebra E′ = F [α′] is a field satisfying

e(E′|F ) = e(E|F ), f(E′|F ) = f(E|F ).

Moreover, α′ is minimal over F .
(2) Let j < k be integers. The set of Ad α-fixed points in p(E)j/p(E)k is pj

E +
p(E)k.

These simple facts have some interesting consequences. Set d = [E:F ] and sup-

pose that n = −υE(α) > 0. If m is an integer, n > m �
[n
2

]
, then ψα defines a

character of the group Um+1
a(E) , trivial on Un+1

a(E). This determines the equivalence class
of the stratum [a(E), n,m, α].

Proposition 2. An element g ∈ G = AutF (E) ∼= GLd(F ) intertwines the stratum
[a(E), n,m, α] if and only if g ∈ E×Un−m

a(E) . In particular, g ∈ Ka(E).

Proof. Abbreviate a = a(E), p = p(E). The intertwining condition is

g−1(α+ p−m)g ∩ (α+ p−m) 	= ∅.

Let t be the greatest integer such that g ∈ pt. If this condition holds, we have

αgα−1 − g ∈ pt+n−m,

or, equivalently, g+pt+n−m is a fixed point in pt/pt+n−m for the action of Adα. That
is, g ∈ E×Un−m

a , as required. The converse is immediate.

Corollary. Let π be an irreducible smooth representation of G = GLd(F ). Suppose
there is a stratum [a, n, n−1, α], n � 1, with the following properties:

(a) αa = p−n
a .

(b) F [α]/F is a field extension of degree d and α is minimal over F .
(c) π contains the character ψα of Un

a .
Let ρ be an irreducible representation of Ka, contained in π and containing ψα. For
any such ρ, we have π ∼= c-IndG

Ka
ρ.

We can describe, in complete detail, the representations ρ which appear here,
but we will do that later.

Before passing on, we briefly consider the case of a stratum [a, n, n−1, α], where
α is minimal over F , αa = p−n

a , but E = F [α] is not a maximal subfield of A.
Proposition 1(1) fails completely, but an analogue of part (2) holds. In Proposition
2, the intertwining of [a, n,m, α] is Un−m

a B×Un−m
a , where B is the A-centralizer of

E (but this is not contained in Ka unless F [α] is maximal).
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1.3 Fundamental strata

We have uncovered a few examples of cuspidal representations constructed by in-
duction. We now turn to the analysis of general (irreducible) representations. The
examples we know are not at all typical, but they provide a useful guide.

1.3.1 Fundamental strata

Let [a, n, n−1, b] be a stratum in A = EndF (V ), where dimF V = N say. Writing
p = rada, we have b ∈ p−n and, more generally, bm ∈ p−mn for any integer m � 1.
We call [a, n, n−1, b] non-fundamental if bm ∈ p1−mn for some m � 1. Of course,
[a, n, n−1, b] is called fundamental if it is not non-fundamental.

Proposition. Let [a, n, n−1, b] be a stratum in A. Let p = rad a, e = e(a). The
following conditions are equivalent:

(1) The stratum [a, n, n−1, b] is not fundamental.
(2) There is a hereditary order a1 in A, of period e1 and radical p1, and an integer

n1 such that
b+p1−n ⊂ p−n1

1 and n1/e1 < n/e.

This has useful consequences.

Corollary. (1) Let [a, n, n−1, b] be a fundamental stratum in A. If it intertwines
with a null stratum [a′, n′, n′−1, 0] then

(n′−1)/e′ � n/e,

where e = e(a), e′ = e(a′).
(2) For i = 1, 2, let [ai, ni, ni−1, bi] be a fundamental stratum in A. If these two

strata intertwine, then
n1/e(a1) = n2/e(a2).

1.3.2 Application to representations

Let π be an irreducible smooth representation of G = AutF (V ). Say that π has level
zero if there is a maximal order m in A = EndF (V ) such that π admits a U1

m-fixed
point.

This condition, we note, does not depend on the maximal order m, since any
two choices of m are G-conjugate (If a is a hereditary order in A, contained in
some maximal order m, then U1

m ⊂ U1
a . This explains why we need only consider

maximal orders here). In principle, we already know everything about cuspidal
representations of level zero (1.1.5 Corollary), so we concentrate on the case of
positive level.

So, let π be an irreducible smooth representation of G, not of level zero. We
define the normalized level of π to be

�(π) = min n/e(a),
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where (n, a) ranges over all pairs consisting of a hereditary order a in A and an integer
n � 1 such that π contains the trivial character of Un+1

a . Note that e(a) � dim V ,
so �(π) � 1/ dimV .

Theorem. Let π be an irreducible smooth representation of G, of positive level.
Let [a, n, n−1, b] be a stratum contained in π. This stratum is fundamental if and
only if n/e(a) = �(π). In particular, π contains a fundamental stratum.

Proof. Let [a, n, n−1, b] be a stratum contained in π. If it is not fundamental, we
apply the proposition above to get a hereditary order a1 and an integer n1 such that
n1/e1 < n/e and b+p1−n ⊂ p−n1

1 (using e1 = e(a1) and so on). The containment
implies p1−n ⊂ p−n1

1 so, dualizing, we get p1+n1
1 ⊂ pn. The representation π thus

contains the character ψA,b restricted to U1+n1
a1

, and this character is trivial again
by the containment.

So, we start analyzing the irreducible representations of G in terms of the fun-
damental strata they contain.

1.3.3 The characteristic polynomial

We choose a prime element �F of F : we only use this for comparison purposes, so
the choice is irrelevant.

We are given a stratum [a, n, n−1, b] in A. Let e = e(a), and let g = gcd(n, e).
The element b0 = �

n/g
F be/g then lies in a. If a = a(L), for a lattice chain L =

{Li}i∈Z, the element b0 defines an endomorphism of L0/Le. Let ϕb(t) ∈ kF [t] be the
characteristic polynomial of this endomorphism (which is independent of the choice
of base point L0). In particular, ϕb(t) is monic, of degree N = dimF V . Notice that
ϕb(t) comes as a product of e polynomials, since L0/Le comes equipped with a flag
Li/Le of b0-stable subspaces.

Proposition. (1) The stratum [a, n, n−1, b] is fundamental if and only if
ϕb(t) 	= tN .

(2) For i = 1, 2, let [ai, ni, ni−1, bi] be a fundamental stratum in A. If these two
strata intertwine, then ϕb1 = ϕb2 .

In particular, if two fundamental strata occur in the same irreducible represen-
tation of G, they share the same characteristic polynomial. This expresses a key
dichotomy.

Theorem. Let π be an irreducible smooth representation of G, of positive level.
Let ϕ(t) be the characteristic polynomial of some fundamental stratum appearing in
π. If ϕ(t) has at least two distinct irreducible factors, then π is not cuspidal.

This is proved by producing explicitly a non-zero Jacquet module—we shall say
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no more about it.
A fundamental stratum whose characteristic polynomial has at least two distinct

irreducible factors will be called split fundamental. The theorem reduces us to
the case where this “characteristic polynomial of π” is a power of an irreducible
polynomial f(t) with f(t) 	= t.

1.3.4 Nonsplit fundamental strata

These have a very useful property.

Lemma. Let [a, n, n−1, b] be a nonsplit fundamental stratum. The element b then
lies in Ka.

Proof. Let p = rad a and let {Li : i ∈ Z} be the lattice chain defining a. Since b
lies in p−n but not in p1−n, the condition b ∈ Ka is equivalent to bLi = Li−n, for
all i. Assuming n � 0, we have bjLi ⊂ Li−jn, j � 1. One of these containments
is strict if and only if the characteristic polynomial of the stratum is divisible by t.

Definition. Let a be a hereditary order in A with radical p. A stratum of the form
[a, n, n−1, α] is called simple if

(1) αa = p−n.
(2) the algebra F [α] is a field, and
(3) α is minimal over F .

In particular, a simple stratum is non-split fundamental.

Theorem. Let π be an irreducible smooth representation of G ∼= GLN (F ), contain-
ing a non-split fundamental stratum. The representation π then contains a simple
stratum [a, n, n−1, α].

Proof. Let [a, n, n−1, b] be a nonsplit fundamental stratum occurring in π. Let
g = gcd(n, e(a)). Let L be the lattice chain defining a. Every lattice bi�j

FL0 lies in
L and this set of lattices is a lattice chain L0, contained in L, of period e(a)/g. Let
a0 = a(L0). We have Un/g

a0 ⊂ Un
a , so π contains the character ψA,b|Un/ga0

. That is, π

contains the (nonsplit fundamental) stratum [a0, n/g, n/g−1, b]. In other words, we
might as well assume that e(a) is relatively prime to n.

We form the element b0 = �n
F b

e(a) ∈ Ua. This acts on L0/L1 as an automorphism
with characteristic polynomial ϕb(t) = f̃(t)r, where f̃ [t] ∈ kF [t] is irreducible and
r is some positive integer. We choose a maximal flag of b0-invariant subspaces of
L0/L1. Applying powers of b, we get such a flag in each Li/Li+1. Putting these
together, we get a lattice chain L′ containing L, of period re(a), invariant under
b, and such that b0 acts on each L′j/L

′
j+1 as an automorphism with characteristic
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polynomial f̃(t). Let a′ = a(L′).
We choose a monic polynomial f [t] ∈ oF [t] reducing to f̃ [t]. Using a block

matrix picture, we find α0 ∈ Ua with minimal polynomial f [t] and acting on each
L′i/L

′
i+1 in the same way as b0 (the element α0 is represented by a diagonal block

matrix, in which all diagonal blocks are the same). We have α0 ≡ b0 (mod U1
a ). We

work back to get α ∈ Ka, with α0 = �n
Fα

e(a) and α ≡ b (mod U1
a1

). The stratum
[a1, n1, n1−1, α], where n1 = rn, is then simple. However, Un1

a1
⊂ Un

a , so π contains
the character ψA,b = ψA,α of Un1

a1
.

1.4 Prime dimension

Let l be a prime number, and let G = GLl(F ). Let π be an irreducible cuspidal
representation of G, which is not of level zero.

1.4.1 A trivial case

We know that π must contain a non-split fundamental stratum, and hence a sim-
ple stratum [a, n, n−1, α]. The field F [α]/F is a subfield of Ml(F ), so the degree[
F [α]:F

]
is either 1 or l.

Consider first the case
[
F [α]:F

]
= 1, that is, α ∈ F×. Since αa = p−n, where

p = rad a, the integer n is divisible by e = e(a) and so υF (α) = −n/e. There exists
a character χ of F× such that χ|

U
n/e
F

= ψF,α. We then have

χ ◦ det |Una = ψA,α.

The representation χ−1π : g �→ χ(det g)−1π(g) has a Un
a -fixed point, whence

�(χ−1π) < n/e = �(π). We have so reduced the level and can start again.

1.4.2 The general case

We consider irreducible cuspidal representations π of G = GLl(F ) such that 0 <

�(π) � �(χπ), for any character χ of F×. Such representations π are said to be “of
minimal positive level”.

It will be useful to take a more systematic approach. Let
[
a, n,

[n
2

]
, α
]

be a

stratum in A = Ml(F ), such that [a, n, n−1, α] is simple and α /∈ F . Set E = F [α].
Since E is a maximal subfield of A, a is the unique E-pure hereditary order in A. It
is principal, with e(a) = e(E|F ).

We form the groups

H1 = H1(α, a) = U1
EU

[n/2]+1
a ,

J1 = J1(α, a) = U1
EU

[n+1/2]
a .
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We define a set (a, α, ψF ) = (α) of characters of H1 by the condition θ ∈ (α)
if θ|

U
[n/2]+1
a

= ψα. The characters θ ∈ (α) are the simple character defined by α.
An element g ∈ G intertwines θ ∈ (α) if and only if g ∈ E×J1(α) (see Subsection
1.2.7). We also remark that the group H1(α) and the set (a, α) only determine α
modulo p

−[n/2]
a . They do not determine the field F [α] in general.

Theorem. Let
[
a, n,

[n
2

]
, α
]

be a stratum, n � 1, such that [a, n, n−1, α] is simple

and F [α] 	= F .
(1) Let θ ∈ (α). An irreducible representation of G containing θ is cuspidal, of

minimal positive level.
(2) Let θ1, θ2 ∈ (α). If θ1 intertwines with θ2 in G, then θ1 = θ2.
(3) Let π be an irreducible cuspidal representation of G, of minimal positive level.

There exists a simple stratum [a, n, n−1, α] such that π contains some θ ∈ (α).

Proof. Part (1) is already done. In (2), any g ∈ G which intertwines θ1 with θ2

must intertwine ψα (on U [n/2]+1
a ) with itself. Therefore g ∈ E×J1(α) and so θg

1 = θ1.

In part (3), we know from II §4 that π contains a simple stratum [a, n, n−1, α],

with α /∈ F . It therefore contains a stratum
[
a, n,

[n
2

]
, β
]
, with β ≡ α (mod U1

a ).

We can change our choice of α and assume β = α. Thus π contains an irreducible
representation of H1(α) containing ψα (on U [n/2]+1

a ). The only such representations
are the simple characters θ ∈ (α).

Parts (2), (3) of Theorem 1 give a sort of uniqueness. There is stronger version.

Proposition. For i = 1, 2, let [a, ni, ni−1, αi] be a simple stratum. Let θi ∈
(a, αi), and suppose that θ1 intertwines with θ2 in G. There exists g ∈ Ka such

that θ2 = θg
1 . In particular, αg

1 ≡ α2 (mod p−[n/2]).

Proof. If the θi intertwine, so do the simple strata [a, ni, ni−1, αi]. It follows that
n1 = n2 = n say, and that the αi have the same characteristic polynomials. They
are therefore conjugate modulo p1−n (we can write down an explicit matrix repre-
sentative directly from the characteristic polynomial). One proceeds by successive
approximation, using the fixed point Theorem 1.2.7 Proposition 1. This reduces us
to the case α1 ≡ α2 (mod p−[n/2]) and we are done.

1.4.3 The inducing representation

We continue in the same situation, with a simple character θ ∈ (α). The G-
normalizer of θ is the group J(α) = E×J1(α), and this is also the set of g ∈ G

which intertwine θ. We need to know, therefore, the irreducible representations of
J containing θ. We start with the group J1.
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Proposition. There is a unique irreducible representation η = ηθ of J1 such that
η|H1 contains θ. Indeed, η|H1 is a multiple of θ.

Proof. This is based on a standard construction from the representation theory of
finite p-groups. Let p be the characteristic of the field kF .

Let Z = H1/Ker θ, Y = J1/Ker θ. Thus Z is a finite, cyclic p-group, Z is central
in Y and Y/Z is a finite, elementary abelian p-group. To prove the result, we have
to show that Z is the centre of Y . This is done as follows. If we take x, y ∈ J1,
the commutator [x, y] = xyx−1y−1 lies in H1 and the pairing (x, y) �→ θ[x, y] is an
alternating form on the quotient (Fp-vector space) J1/H1. We have to show that
this form is nondegenerate.

It is enough to take elements 1+x, 1+y ∈ U [n+1/2]
a in which case

θ[1+x, 1+y] = ψA(α(xy−yx)) = ψF trA(αxy − αyx) = ψA(y(αx− xα)).

This vanishes for all y if and only if αx−xα ∈ p
1−[n+1/2]
a , which comes down to

1+x ∈ U [n+1/2]
E U

[n/2]+1
a ⊂ H1.

Theorem. Let Λ be an irreducible representation of J(α) which contains θ. The
restriction Λ|J1(α) is then equivalent to ηθ. If Λ′ is an irreducible representation of
J(α) containing θ, then Λ′ intertwines with Λ if and only if Λ′ ∼= Λ.

1.4.4 Uniqueness

There is one more uniqueness issue to be resolved. If π is any irreducible smooth
representation of GLn(F ), let D(π) be the group of unramified characters χ of F×

such that χπ ∼= π. Thus D(π) is cyclic, of order d(π) dividing n.
In the case to hand, where π is a cuspidal representation of GLl(F ) of minimal

positive level, d(π) is 1 or l. Looking at the inducing representation theorem, we
get:

Lemma. Let π be an irreducible cuspidal representation of G, of minimal positive
level. If [a, n, n−1, α] is a simple stratum occurring in π, then d(π)e(a) = l.

1.4.5 Summary

Let [a, n, n−1, α] be a simple stratum in A = Ml(F ), with n � 1 and α /∈ F . Let
θ ∈ (α). An extended maximal simple type over θ is an irreducible representation
of J(α) which contains θ.

Classification Theorem. Let (π, V ) be an irreducible cuspidal representation of
G = GLl(F ) of minimal positive level.

(1) There exists a simple stratum [a, n, n−1, α] in Ml(F ) such that π contains
some θ ∈ (α). The G-conjugacy class of θ is uniquely determined by π.
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(2) There exists a unique extended maximal simple type Λ over θ which occurs
in π. It satisfies

π ∼= c-IndG
J(α)Λ.

Moreover, Λ is the natural representation of J(α) on the θ-isotypic subspace V θ of
V .

With suitable definitions (to come), this is very close to the final classification
theorem for general dimension N .

1.5 Simple strata and simple characters

We define the general notion of simple character. A simple character has to be
defined via a simple stratum, but one cannot usually retrieve the simple stratum
from the simple character. This ambiguity has some trivial components, but others
seem to be of arithmetic significance: the picture is not properly understood at this
stage.

Unless explicitly stated otherwise, V is an F -vector space of finite dimension
N , and A = EndF (V ), G = AutF (V ). We will give hardly any proofs, as these
require a quite elaborate calculus and many pages. The material is all available in
the literature, especially [5].

1.5.1 Adjoint map

We record a technicality for later use.
Let E/F be a subfield of A, and let B denote the A-centralizer of E. The

vector space A carries the nondegenerate, symmetric bilinear form (x, y) �→ trA(xy)
induced by the matrix trace tr : A → F . Let C temporarily denote the orthogonal
complement of B with respect to this form. If we have an element β ∈ E such that
E = F [β], then surely C contains the space {βx−xβ : x ∈ A}. The kernel of the
map x �→ aβ(x) = βx−xβ is B so, comparing dimensions, we get

C = aβ(A).

Note that, if E/F is inseparable, then B ⊂ C. In general, the space C is a (B,B)-
bimodule.

Proposition 1. (1) There exists a non-trivial (B,B)-homomorphism A→ B.
(2) The E-vector space Hom(B,B)AB has dimension one. Any non-zero bimodule

map f : A→ B is surjective with kernel C, and satisfies f(E) ⊂ E.

Proof. Part (2) is formal and we give no proof. To prove (1), we choose non-trivial
characters ψF ∈ F̂ , ψE ∈ Ê and set ψA = ψF ◦ trA, ψB = ψE ◦ trB. For a ∈ A,
let aψA ∈ Â denote the character x �→ ψA(ax), and similarly for B. The restriction
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aψA|B lies in B̂, and there is a unique b ∈ B such that aψA|B = bψB. One may
choose aψA to have non-trivial restriction to B, and a �→ b is the desired map.

In the context of the last proof, we take ψF , ψE both of level one. Together, they
give a non-trivial (B,B)-bimodule homomorphism s : A → B. Any such map we
call a tame corestriction, on A relative to E/F . Observe that if s′ is some other tame
corestriction, there exists u ∈ UE such that s′ = us. Note also that, if E = F [β], we
have an infinite exact sequence

· · · s−−−−→A
aβ−−−−→A

s−−−−→A
aβ−−−−→A

s−−−−→· · ·
We shall be concerned with the behaviour of tame corestriction relative to hereditary
orders.

Proposition 2. Let E/F be a subfield of A and let a be an E-pure heredtiary
order in A with p = rad a. Let B be the A-centralizer of E and set b = a ∩ B,
q = p ∩B = rad b. If s is a tame corestriction on A relative to E/F , then

s(pj) = qj , j ∈ Z.

1.5.2 Critical exponent

Two strata [a, n,m, bi] in A will be deemed equivalent if b1 ≡ b2 (mod p−m), where
p = rad a.

A stratum [a, n,m, a] is pure if aa = p−n, F [a] is a field and a is F [a]-pure.
So, let [a, n,m, β] be a pure stratum in A, and write E = F [β]. Let B denote the
A-centralizer of E, put b = a ∩B and q = p ∩B. We define

nk = {x ∈ a : aβ(x) ∈ pk}, k ∈ Z.

For k � −n, nk = a, while b ⊂ nk for all k. The intersection
⋂

k∈Z
nk is b, so

nk ⊂ b+p for all sufficiently large k. Of course, if E = F , then nk = a = b for all k.
Ignoring this case for the moment, we define the critical exponent

k0(β, a) = max{k ∈ Z : nk 	⊂ b+p}.
When E = F , it works best to set k0(β, a) = −∞ (but we often forget this excep-
tional case). Otherwise, we have k0(β, a) � −n.

The dependence of k0(β, a) on a is straightforward.

Proposition 1. If V ′ is a finite-dimensional E-vector space, and if [a′, n′,m′, β]
is a pure stratum in A′ = EndF (V ′), then

n′

n
=
e(a′)
e(a)

=
k0(β, a′)
k0(β, a)

.

In particular, the quantity k0(β) = k0(β, a(E)) depends only on β and determines
all the other values k0(β, a).


