THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

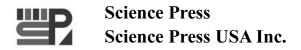
Edited by

LI Shengcai NIU Peihuan

THEORY AND PRACTICE OF ENERGETIC MATERIALS (VOL. IX)

Proceedings of the 2011 International Autumn Seminar on

Propellants, Explosives and Pyrotechnics Nanjing, Jiangsu, China, September 20–23, 2011


Supported by

National Natural Science Foundation of China

Edited by

LI Shengcai NIU Peihuan

State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing, P. R. China

Introduction of Content

This monograph is the Proceedings of the 2011 International Autumn Seminar on Propellants, Explosives and Pyrotechnics (2011 IASPEP). Collected in this volume are 194 papers from 14 countries. These papers cover the following aspects: Synthesis and Manufacture, Characterization and Analysis, Combustion and Detonation, Modeling and Calculation, and Miscellaneous. Many novel research results on propellants, explosives and pyrotechnics achieved during the last few years are mentioned in the proceedings.

Published by
Science Press
16 Donghuangchenggen North Street
Beijing 100717
P. R. China

Copyright ©2011 by Science Press ISBN 978-7-03-032045-2

All right reserved. No part of the material by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, or by any information storage and retrieval system, without written permission from the copyright owners.

PREFACE

Following the success of the eight previous International Autumn Seminars on Propellants, Explosives and Pyrotechnics which were held in China's Beijing(1996), Shenzhen(1997), Chengdu(1999), Shaoxing(2001), Guilin(2003), Beijing(2005), Xi'an(2007), Kunming(2009), the ninth seminar with the same theme is to be held in Nanjing, Jiangsu Province, China, on September 20–23, 2011. The purpose of this seminar is to foster the exchange of ideas, evaluate new methods and new lines of investigation, and bring together scientists from all over the world, working in universities and research institutions.

Collected in the proceedings are 194 papers accepted for presentation at the Seminar. These papers are contributed by 581 authors and co-authors from 14 countries which are: Australia, Belgium, Canada, China, Czech Republic, Egypt, India, Iran, Japan, Korea, Pakistan, Russia, Switzerland and USA. The contents of the proceedings have also been recorded in electronic form and provided on CDROM in color. I believe that the proceedings will benefit not only the participants of the meeting but also all of colleagues engaging in the research and development of propellants, explosives and pyrotechnics.

I wish to thank Academician ZHU Jianshi, Mr. Rutger WEBB and Prof. Karl RINK for their outstanding and dedicated contributions as the seminar co-chairmen. Thanks are also given to the members of International Advisory Committee of the Symposium for their tremendous contributions, and to all the authors for their valuable papers. And I also would like to express my sincere thanks to the National Natural Science Foundation of China for supporting this seminar.

In addition, I would like to express my sincere thanks to the staffs of the Editorial Department of *Journal of Safety and Environment* for their tireless efforts and outstanding services in the administration and preparation of the manuscript of the proceedings, to the staffs of Science Press for their diligence in publishing the proceedings.

Finally, I wish all participants a most enjoyable and informative experience.

Dr. FENG Changgen

冯虽根

2011 International Autumn Seminar on Propellants, Explosives and Pyrotechnics

Nanjing, Jiangsu Province, China, September 20-23, 2011

Sponsored by

China Ordnance Society
Beijing Institute of Technology, China
Hubei Institute of Aerospace Chemotechnology, China
Institute of Chemical Materials, CAEP

Science and Technology on Applied Physical Chemistry Laboratory (Shaanxi Applied Physical Chemistry Research Institute), China

Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, China Nanjing University of Science and Technology, China North University of China

Organized by

State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology), China Nanjing University of Science and Technology, China

International Advisory Committee

A. J. TULIS, USA
J. SHORT, USA
G. SHVETSOV, Russia
L. De LUCA, Italy
K. K. KUO, USA
ANG H. G., Singapore
H. J. McSPADDEN, USA
I. PLAKSIN, Portugal
V. P. SINDITSKII, Russia

Co-Chairmen

ZHU Jianshi, China Academy of Engineering Physics Rutger WEBB, International Pyrotechnics Society Karl K. RINK, University of Idaho, USA

FENG Changgen, Beijing Institute of Technology

Steering Committee

WANG Zeshan, Nanjing University of Science and Technology
XIAO Zhongliang, North University of China
PANG Aimin, Hubei Institute of Aerospace Chemotechnology
HUANG Hui, Institute of Chemical Materials, CAEP
LIU Jupeng, Science and Technology on Applied Physical Chemistry Laboratory
REN Quanbin, Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory
ZHANG Qingming, State Key Laboratory of Explosion Science and Technology

LI Fengsheng, Nanjing University of Science and Technology

Secretariat

FENG Changgen, LI Shengcai State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing 100081 China

E-mail: BIT@iaspep.com.cn Tel/ Fax: +86-10-68913997

CONTENTS

SECTION ONE

SYNTHESIS AND MANUFACTURE

Synthesis and Characterization of 3,6-di(nitramino)-1,2,4,5-tetrazines

RUDAKOV G. F., USTINOVA T. V. & ZHILIN V. F. (3)

Nitration of Derivatives of 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane

YUDIN N. V., ZBARSKY V. L. & FILIMONOVA E. V. (8)

Preparation Nano Sized HMX by Using Ultrasonic Waves

BAYAT Yadollah, MOUSAVI Seyed Hamed, BAYAT Fatemeh,

RASTEGAR Nasab Gholamhossein & GHOLAMHOSSEINI Tahereh (13)

Heteropolyacids (HPAs) as Heterogeneous Catalysts: A Novel Catalytic Method for Synthesis of HNIW (CL-20)

BAYAT Yadollah & AZIZKHANI Vahid (17)

A Modified Process for Spherical 2-Diazo-4,6-Dinitrophenol(DDNP) Synthesis

KANG Tae Wun, JEONG Won Bok & LEE Ho Yeon (22)

Catalytic Production of Glyserine Monooleate Emulsifier for Use in Emulsion Explosives

GOODARZI H., ABOOTALEBI R., MOMENIZADEH H.,

HASSANZADEH M. A. & NAGHIPOUR M. (25)

Increasing of Ethanol Production Yield as a Solvent for Producing of any Kind of Propellant by Clarification of Cane Molasses

MIAHIPOUR A., SHAFIEI K. & MOMENIZADEH PANDAS H. (31)

Study of Relationships Between Fractional Conversion and Reaction Time with Heat of Dilution of Mixed Acid and It's Effects on Safe Operating Conditions at Continuous Nitroglycerin Manufacture

GRAYELI K., MIAHIPOUR A., MAHMOUDIAN M., GOODARZI A. & SABER M. Mahmoudi (35) Synthesis of Glycidyl Azide Polymer Azide Energetic Plasticizer

MAHYARI Amir, AZARNIA Jamshid, FERDOWSI Mohammad & NOSRATZADEGAN Keyvan (43) Synthesis of 2,4-Dinitroimidazole (2,4-DNI) from Imidazole

FAGHIRI M., NOSRATZADEGAN K. & HOSSEINDOUST B. (48)

Synthesis of 2,3-Dimethyl-2,3-Dinitrobutane Crystals: As a Chemical Detector in Explosives

AZARNIA J., DEZHALON A., ARSHADI N. & FERDOWSI M. (53)

Application of Dispersive Liquid-Liquid Microextraction Combined with UV-Vis Spectrophotometry for Preconcentration and Determination of 2-Methylaziridine in Water Samples

ZAREI Ali Reza, DEHGHANI Hosein, MARDI Kobra & CHALAVI Soheila (56)

Production of 1,1-Diamino-2,2-Dinitroethene (FOX-7) Crystals in Pilot Plant: Starting from Acetamidine Hydrochlorides

AZARNIA J., HAFIZI H. R. & FERDOWSI M. (62)

Production of a Novel Plastic Explosive AFX-757, Properties and Applications

NOZARY S., NOSRATZADEGAN K., HAFIZI ATABAK H. R. & FERDOWSI M. (65)

Production of Safe Booster (Per Chlorated Booster)

GHASEMI A. M. (70)

Synthesis, Crystal Structure and DFT Calculation of Energetic Material: Ethylenediamine Diperchlorate (YE)

MA Peng, ZHANG Lin, ZHU Shunguan & CHEN Houhe (75)

Nitration of TAIW t	o Synthesize (CL-20 Using	N ₂ O ₅ /HNO ₂	as Nitrating A	Agent

MEI Zhenhua, QIAN Hua & LÜ Chunxu (81)

Synthesis, Characterization and Performance Evaluation of Copper(I) 5-nitrotetrazole (CuNT)

PU Yanli, SHENG Dilun, ZHU Yahong, CHEN Likui, YANG Bin & LIU Wenjia (85)

Study on the Preparation Process of 3, 4-Di (nitrofurazano) Furoxan

WANG Jun, ZHOU Xiaoqing, ZHANG Xiaoyu, LI Jinshan & NIE Fude (91)

Lead-free Primary Explosives: Transition Metal Carbohydrazide Perchlorates

TANG Shimin, LI Zhimin, ZHANG Tonglai, YANG Li, ZHANG Jianguo & ZHOU Zunning (96)

Control of Crystal Morphology and Density of ε-HNIW by Recrystallization from Solvent and Antisolvent

JIANG Xiabing, REN Hui, JIAO Qingjie & GUO Xueyong (101)

Preparation and Characterization of Zirconium Composite Particles with Reduced Electrostatic Discharge Sensitivity

GUO Xiaode, LIANG Jiyuan & LI Fengsheng (106)

Preparation and Characterization of Al-CuO Nano-arrays

ZHANG Fang, WANG Yanlan, WANG Kexuan & YANG Aiwu (112)

Preparation and Properties of Porous Copper/ Sodium Perchlorate Composite

WANG Yanlan & ZHANG Fang (116)

Synthesis of 1,5-Bis(p-toluenesulfonyl)-1,5-diazcyclooctane-3,7-dioxime as Potential High Energetic Intermediate

YANG Yue & CAI Chun (120)

Nucleophilic Substitution Reaction of Tetrazine Derivatives and Aminofurazan

LIU Shenglong & CAI Chun (125)

Synthesis and Characteristic on Primary-hydroxyl Terminated GAP

SHAN Zhongqing, ZHAI Jinxian, YANG Rongjie & LI Xiaodong (129)

Synthesis and Characterization of Energetic Ethylene-Bridged Bis(nitroiminotetrazolate) Salts

YI Wenbin, WANG Jieping & CAI Chun (133)

Preparation of Film Mg-PTFE Pyrotechnic Composite by Vacuum Evaporation

CHEN Xin, LI Yan, PAN Gongpei & LÜ Huiping (138)

Study of Modified Barium Nitrate as a Safe Pyrotechnic Oxidant

CHEN Xin, LI Yan, PAN Gongpei & LÜ Huiping (141)

Technology of Micro/Nano-Particle Formation of HMX Using Supercritical CO₂

CAI Jianguo (145)

Studies on Deconsolidation and Combustion Performance of Thermally Consolidated Propellants Deterred by Coating Multi-layers

XIAO Zhenggang, YING Sanjiu & XU Fuming (150)

Preparation and Combustion Performance of High Progressivity Single-Base Oblate Spherical Powder with Large Web Thickness

XIAO Zhenggang, YING Sanjiu & XU Fuming (154)

Four Novelty High-Nitrogen (N > 55.0%) and Environmental Friendly Energetic Compounds $[M(DAT)_6](ClO_4)_2$ (M = Zn(II), Cd(II), Co(II) and Mn(II), DAT = 1,5-diaminotetrazole)

WU Bidong, ZHANG Tonglai, YANG Li, ZHANG Jianguo, ZHOU Zunning & CUI Yan (158)

Design and Calibration of New Compression Stress Sensor of Propellant Charge

XU Hao, RUI Xiaoting, WANG Guoping, CHEN Tao & YANG Fufeng (164)

Synthesis and Crystal Structure of 5,8-Dinitro-Napthalene-1,4-Dicarboxylate Acid

WU Ruifeng, WANG Chou, ZHANG Tonglai & QIAO Xiaojing (169)

Investigation on Fabrication and Properties of Ni-Cr Thin Film Ignitor

XIE Ruizhen, REN Xiaoming, LIU Lan, XUE Yan, PENG Zhiming & ZHANG Jingxin (172)

- Synthesis, Crystal Structure, Thermal Decomposition and Sensitivity Properties of (IMA)(TNM) and (Pyr)(TNM)
 - WANG Shiwei, YANG Li, ZHANG Guoying, ZHANG Tonglai, ZHOU Zunning & ZHANG Jin (175)
- Fabrication and Characterization of Carbon Nanotubes Composite Energetic Bridge Film
 - GUO Rui, HU Yan, WU Shaiqing, SHEN Ruiqi, YE Yinghua, WU Lizhi & FANG Yuqiang (181)
- Nitration of Aromatic Compound Catalyzed by Keggin Heteropolyacid Anion Based Brønsted Acidic Ionic Salts
 - YANG Hongwei, TANG Yongxing, QI Xiufang, LÜ Chunxu & CHENG Guangbin (187)
- Study on the Photoatalytic Pegradation of Unsymmetrical Dimethylhydrazine Wastewater with ZnO Nano-sized Particles
 - JIA Ying, LIU Tiantian, ZHANG Cuiping & LÜ Xiaomeng (192)
- Effects of Typical Emulsifier on Rheological Properties and Stability of Emulsion Matrix
 - WANG Liqiong, FANG Jie, WANG Nafeng & MA Maodong (197)

SECTION TWO

CHARACTERIZATION AND ANALYSIS

- 3,4-bis(3-nitrofurazan-4-yl)furoxan (dntf):Thermal and Combustion Properties
 - SINDITSKII V. P., BURZHAVA A. V., SHEREMETEV A. B. & ALEKSANDROVA N. S. (205)
- Effect of Ageing on Structural Integrity of a Composite HTPB Solid Propellant Rocket Motor Grain
 - RENGANATHAN K., SARMA B. S. V. Rama, RAO B. Nageswara,
 - SIVASUBRAMONIAN B. & NAIR N. Jayachandran (210)
- The Right Tool for the Job: Microcalorimetry in Energetic Materials Research and Runaway Reaction Evaluation

 WU Frank & WOODS Doug (221)
- Thermal and Kinetic Studies of Ammonium Nitrate and the Effect of Addition of Potassium Nitrate Employing Simultaneous Thermal Analysis Technique
 - ZAHEER-U-DIN Babar & MALIK A. Q. (227)
- Improvement of Thermal Decomposition Properties of Ammonium Perchlorate Particles by Using Some Polymer Coating Agents
 - ESLAMI Abbas, BAZRGARY Masomeh, HOSSEINI Seyed Ghorban (234)
- Thermal Decomposition of Ammonium Perchlorate Coated on SiC Nanoparticles
 - SOVIZI Mohammad Reza & BABAEI Khosro (243)
- Study on the Catalytic Effect of TiC Nanoparticles on the Thermal Decomposition of Ammonium Perchlorate
 - SOVIZI Mohammad Reza & BABAEI Khosro (248)
- Phase Diagrams of Energetic Binary Mixtures of Ethylnitramine with 2,4-dinitro-2,4-diazahexane and 3,5-dinitro-3,5-diazaheptane
 - HOSSEINDOUST B., FERDOWSI M. & NOSRATZADEGAN K. (253)
- Studying the Effect of an Htpb Rubbery Modifier on Thermal Properties of Some Selected Dgeba Based Epoxy Resin
 - KHALAF Eyad S., HADHOUD Moustafa K. & HASSANEIN Saeed M. (260)
- Accelerated Aging Testing Method Research on Composite Propellant under Cyclic Temperature Load
 - DING Biao, LIU Zhuqing, QIU Xin & LI Gaochun (268)
- Defects Characterization of Molecular Crystal Explosives
 - TIAN Qiang, YAN Guanyun, SUN Guangai, HUANG Chaoqiang, XIE Lei,
 - LI Hongzhen & CHEN Bo (274)

Research on Sensitizing Agent Content on Demulsification and Desensitization of Emulsion Explosive under Dynamic Pressure

YAN Shilong, WU Hongbo & LIU Feng (283)

Comparison Research on Physical Performance of Propellant and Pyrotechnics after Aging

CHEN Minghua, YAN Jianping & WANG Weimin (287)

Thermal Decomposition Study on a White-Light Fireworks Agent by Accelerating Rate Calorimeter

JIANG Huiling & SUN Bin (290)

Strain Effect on Interfacial Adhesion Between Filler and Binder Matrix in HTPB Propellant

ZHANG Xinggao, ZHANG Wei, LIU Gengran, WU Pai, NIE Fengquan,

JIANG Zhijie & ZHAO Kexin (294)

Effects of Co Nanoparticles on Thermal Decomposition of Ammonium Dinitramide

DUAN Hongzhen, LI Qiaoling & LIU Dabin (300)

Research on Test Method and Facility for Flowability of Step-Press-Loading Charge Explosive

DONG Jun, ZHAO Shengxiang, WANG Guiping, XIONG Xianfeng, WANG Xiaofeng,

HAN Zhongxi & WANG Cailing (304)

Studies on the Thermal Decomposition Characters of Mg/KClO₄ Pyrotechnic System under Static Air Atmosphere by TG and DTA

LI Jintao, HUANG Yinsheng, WANG Wentao & WEI Zhenhao (309)

Study on the Preparation Features of High Density Inert Metal Increasing Weight of Explosives

TIAN Qinghua & LIU Jiping (312)

Study on Fabrication and Thermal Analysis of Porous Silicon Nanoenergetic Materials

WANG Shouxu, YANG Cheng, SHEN Ruiqi, YE Yinghua & HU Yan (315)

Thermal Decomposition of Nitrated Hydroxyl Terminated Polybutadiene

WANG Qingfa, WU Fangmin, TAO Huabing, WANG Li, ZHANG Xiangwen & MI Zhentao (322)

A New Way to Estimate Thermal Decomposition and Kinetic of NC

TANG Zhan, QIAO Xiaojing, ZHANG Tonglai & YANG Li (326)

Molecular Structure and Thermal Behavior of 3,6-Dihydrazino-l,2,4,5-Tetrazine Nitrate

MAI Tao, ZHAO Ningning, YAN Biao, LI Junfeng, MA Haixia & SONG Jirong (331)

Study on the Compatibility and Stability of PAVA Pyrotechnic Composition

MU Yinglin, WANG Hongying, HE Jian, ZHOU Mingming, HAO Huanming & LI Gaobao (336)

Study on Modified Ammonium Nitrate and Stability

WEI Yan'an & CAI Baohu (340)

Thermal Behavior and Decomposition Reactional Kinetic Studies on the Plastic Bonded Explosive of JO-8

LIANG Yanhui, ZHANG Jianguo, FENG Xiaojun, ZHANG Tonglai & TANG Zhan (344)

Studies on Thermal Decomposition of Energetic Materials by Dynamic Vacuum Stability Test Method

LIU Rui, ZHANG Tonglai, YANG Li & ZHOU Zunning (350)

Research Method for Dynamic Fracture Performance of Propellant Charge

FENG Binbin, RUI Xiaoting, WANG Guoping & CHEN Tao (354)

Study on Thermal Performance of Polyaryloxyphosphazene Rubber

WANG Zhifeng, WANG Jianzhong, ZHANG Yanhui & CAO Jiping (360)

Testing on Thermal Conductivity and Specific Heat of Typical Pyrotechnic Composition Used for Fireworks

ZHAO Linshuang, DU Zhiming, ZHOU Guangwei, ZHAO Baoguo, NING Huizhen & LI Huabo (363)

Thermal Decomposition Process Analysis of Typical Pyrotechnic Composition Used for Fireworks and Crackers

ZHOU Guangwei, DU Zhiming, GUO Zerong, WANG Ting, ZHAO Baoguo,

XING Qifeng & YIN Qingguo (367)

Accelerated Aging Test Development on Hydroxyl-terminated Polybutadiene (HTPB) Propellant

WANG Guoqiang, RAN Xiulun, ZHANG Xiaohong, GUO Huili, SHI Xiaobing & SHI Aijuan (370)

Study of Reactivity Photoacoustic Spectra of C/KNO₃ Pyrotechnic by a Pulsed Nd: YAG Laser

WANG Hui'e, SHEN Ruiqi, WU Lizhi, YE Yinghua & HU Yan (373)

Effect of Amounts of Aluminum on Thermal Decomposition of Aluminized Explosives Based on RDX

ZHANG Guoying, YANG Li, WANG Hao, TANG Shimin, ZHANG Tonglai & ZHOU Zunning (376)

Non-isothermal Decomposition Kinetics, Heat Capacity, Thermal Safety Properties of 1, 2, 3-Triazolium Nitrate

GAO Hongxu, ZHAO Fengqi, PEI Qing, HU Rongzu, XU Kangzhen & ZHOU Zhiming (380)

Dissolution Properties of N, N-di(2,4,6,-trinitrophenyl)amino-Guanidine in N-methl-2-pyrrolidone and Dimethyl Sulfoxide

XIAO Libai, ZHAO Fengqi, XING Xiaoling, HUANG Haifeng, ZHOU Zhiming,

GAO Hongxu, HAO Haixia & YAO Ergang (388)

Fracture Morphologies of CMDB Propellant

LI Enzhong, LI Jiangcun & JIAO Qingjie (394)

A New Parameter to Characterize Diffusion of TDI to EPDM Insulation in Liquid Absorption Test

HU Wei, CHENG Fuyin, CAI Rulin & MA Xingang (397)

SECTION THREE

COMBUSTION AND DETONATION

A Short History of Detonation Research in America Based on the International Detonation Symposium

SHORT James M. & BOSWELL Christopher J. (405)

Current Instability and Penetration of Shaped-Charge Jets into Low-Density Targets

SHVETSOV Gennady A., MATROSOV Alexander D., BABKIN Alexander V.,

FEDOROV Sergei V. & LADOV Sergei V. (412)

Explosion Initiation by Collapse of Spherical Cavity in Visco-plastic Explosive

DUBOVIK A. V. (420)

Detonation Process as a Chain Branching Reaction—Calculation of Detonation Velocity and Detonation Pressure in Condensed State at Theoretical Density

POZDNYAKOV A. V. (423)

The Possible Explanation of the Self-Cleaning Effect During Explosion Welding as a Result of Thermal Stresses Occurrence

BERDYCHENKO A. A. & FLAT M. H. (428)

Mechanism of Water Vapor Homogeneous Condensation in Rocket Engines Exhaust in the Upper Atmosphere Condition

PLATOV Yulii (433)

Optical Phenomena Associated with the Launch of a Ballistic Missile "Bulava" December 9, 2009

PLATOV Yulii & CHERNOUSS Sergey (439)

Structural Integrity Assessment on a Large Solid Booster Propellant Grain

RENGANATHAN K., SARMA B. S. V. Rama, RAO B. Nageswara,

SIVASUBRAMONIAN B. & NAIR N. Jayachandran (443)

Explosively Driven Fracture and Damage Reduction Measures for Structural Components

HIROE Tetsuyuki, FUJIWARA Kazuhito, HATA Hidehiro,

KAWASHIMA Fumiko & YAMASHITA Wataru (454)

Liner Materials Flight Stability of EFPs and Geometric Configuration Effects

HUSSAIN G., HAMEED A., BARTON P., MALIK A. Q. & KHAN M. B. (464)

Influence of PTFE on the Structural-Mechanical Properties and Laws of Burning of the Composites, Containing Aluminium Powders

RUSIN D. L. & SINYAVSKI N. N. (469)

Continuous Detonation of a Hydrogen-air Mixture in the Air Ejection Mode

BYKOVSKII F. A., ZHDAN S. A. & VEDERNIKOV E. F. (480)

Influence of the Composition of HEMs Formulation on the Ignition Characteristics by Laser Radiation

ARKHIPOV Vladimir A., KOROTKIKH Alexander G. & GROMOV Alexander A. (487)

A Study of Effect of Confinement, Obtuaration and Venting on Burning Rate of Modified Pyrotechnics Delay Composition in Delay Detonator

KHAN Azizullah, MALIK A. Q. & LODHI Zulfiqar H. (491)

Wave Parameters Determination of Azide Silver Explosive Decomposition Process

KRIGER Vadim, KALENSKII Alexander, ZVECOV Alexander,

BOROVIKOVA Anastasia & NIKITIN Andrey (496)

Performance and Detonation Effects of Explosives for the Synthesis of Newer Materials

SHARMA Akash Deep, SHARMA AK & THAKUR Nagesh (502)

Detonation Characteristics and Penetration Performance of Plastic Explosives Based on Different Cyclic Nitramines

ELBEIH Ahmed, ZEMAN Svatopluk, JUNGOVA Marcela,

AKSTEIN Zbynek & VAVRA Pavel (508)

Burning of Hydrocarbon Fuels Directly in a Water-based Heat Carrier: Toward to a New Principle of Operation of Heat Generators

TESLENKO V. S., MANZHALEI V. I., MEDVEDEV R. N.,

DROZHZHIN A. P. & FOMIN P. A. (514)

Parameters, Limits, Attenuation and Suppression of Detonation Wave in a Mixture of a Flammable Gas with Chemically Inert Microparticles

FOMIN P. A. & FEDOROV A.V. (519)

Mechanism and Safety Aspects of Shock Induced Explosions of an Oxygen Containing Bubble in a Flammable Liquids

FOMIN P. A. (526)

Detonation Properties of Emulsion Explosive in Different Confinements—1 Critical Parameters of Detonation

LAVROV V. V. & SAVCHENKO A.V. (530)

Detonation Properties of Emulsion Explosive in Different Confinements—2 Charge Diameter Dependencies

LAVROV V. V., KOLDUNOV S. A. & SAVCHENKO A. V. (536)

Development of Slow Cook-off Set-up

MAREČEK Roman, ŠELEŠOVSKÝ Jakub & MAJZLÍK Jiří (544)

Detonation Burning of Coal

BYKOVSKII F. A., ZHDAN S. A., VEDERNIKOV E. F. & ZHOLOBOV Yu. A. (549)

Development of Colored Smoke on Aircraft of Air Force for Celebration

LEE Seung Mo, YANG Yeong Jun & PARK Se Hong (558)

Experimental Study for Flame Formation in the Magnesium Powder-Steam Swirl Combustor

KO Taeho, LEE Sanghyup, KIM Hyungmin, KIM Sangmin, HAN Ho & YOON Woongsup (564)

Study the Effect of Molecular Weight of PCL and It's Content on the Mechanical Behavior & Heat of Explosion of Typical Crosslink Double Base Propellant

BAYAT Yadollah, ABBASI Saeed & MAZLOOM Darbandy Somayeh (569)

Effects of Perforation and Grain Size on the Burning Rate of Triple Base Propellants	
MOMENIZADEH PANDAS H.	(572)
Thermo Analysis Compound Design and Experimental Study on Metal-Cutting Pyrotechnic Composition	
WANG Peng	(579)
Study of Influence of Solid Obstacle on Premixed CH ₄ -Air Flame Propagation in Rectangular Tube	
WANG Quan, SHEN Zhaowu, GUO Ziru & LI Zhimin	(584)
Study on Response Characteristic of Electric Exploding Foil Switch	
QIAN Yong, DOU Chunya, LIU Yan, REN Xi, HONG Zhimin & ZHOU Mi	(588)
Effect of Graphite on Mechanical Sensitivity and Detonation Velocity of RDX	
ZHAO Yingchun, TONG Yi & HUANG Fenglei	(591)
Study of Model of Ablation Effect of Plasma upon Gun Propellant	, ,
YAN Wenrong, ZHANG Yucheng, ZHAO Xiaomei, ZHANG Ji	angbo.
LI Qiang, YAN Guanghu, LIU Qiang & DU Jiangyuan	(594)
Simulation of Dust Explosion Venting with Venting Duct	()
YU Jianliang, YAN Xingqing, CHEN Ling & YI Jun	(599)
Ignition and Growth Reactive Flow Modeling for RDX Based High Explosive	(3))
CHEN Qingchou, JIANG Xiaohua, ZHU Mingshui & LI Min	(604)
Study on Exploding Foil In-line Ignition System	(001)
YANG Zhenying, JIN Li, ZHANG Yuruo, YANG Shubin & QI Xin	(609)
Detonation Behavior of ANFOs and Emulsion Explosives	(00)
XU Zhixiang, LIU Dabin & HU Yiting	(613)
Study on Work Capacity of Novel High Energy Low Sensitivity Eutectic Materials	(013)
GAO Dayuan, ZHANG Xuemei, SUN Jie & DONG Haishan	(620)
Research on Solid Propellant for MEMS-based Solid Propellant Micro-thruster	(020)
•	(626)
ZHANG Bin, MAO Genwang, XIA Quangqing, HU Songqi & WU Suli	(626)
Researches on RF Protection for Semiconductor Bridge EEDs Using Ferrite Beads	(620)
ZHOU Bin, QIN Zhichun, CHEN Fei, YE Lin, ZHANG Junde & REN Gang	(630)
Research on Charge Utilization Ratio of Explosive Energy under Different Water Depth	((24)
ZHANG Li, LI Shuqi, SUN Yueguang & ZHANG Mingxiao	(634)
Design of Miniature Linear Shaped Charge Cutter	(640)
GONG Kangping, YUN Ni, CHEN Feng & WANG Jia	(640)
Cluster Analysis for Specific Impulse of Propellants Formula Based on DBSCAN	
WANG Bo, ZHAO Hong'an, ZHAO Pengqi, HU Rongzu, GAO Hongxu & XU Siyu	(645)
Application of Micropores Propellant to Launch Charging for Firework	
LIN Xiangyang, LIU Yujun, LI Shengyou & PAN Renming	(649)
Design Techniques for Linear Fragment Distribution in Dynamic Explosion	
LIANG Zhengfeng, YUAN Baohui, CHENG Shujie & LIU Huiling	(654)
New Method for Axial Equal Explosive Field Intensity Control	
CHENG Shujie & LIANG Zhengfeng	(658)
Experimental Study on Afterburning Effect of TNT	
HE Zhongqi, CAO Wei, CHEN Wanghua & PENG Jinhua	(662)
Application of Heat Flux Microsensor in Radiation Measurement of Blasting Field	
HE Zhongqi, HUANG Lei, LI Chunguang, ZHANG Youping & CHEN Wanghua	(665)
Research of Triethylaluminium Explosion	
LIU Gengran, WANG Na, ZHANG Xinggao, LU Wei, ZHAO Kexin & LIU Weiqiang	(670)

Experimental Investigation and Analysis of Safe Distance of Propagation of Detonators	
HOU Haizhou, HU Yiting & WEI Yan'an	(675)
Influence of Humidity on Burning Perfectibility of Two Kinds of Combustible Cartridge Cases	
JIA Haonan, LU Gui'e, JIANG Jinyong, SHU Anmin & HAO Chenggang	(681)
Research on Radar Pulse Sensitivity of Bridge Wire EED	
JI Xiangfei, CHENG Jiaqi, FENG Qingmei, ZHAO Tuan & YAO Hongzhi	(684)
Research on Safety and Reliability of EID in EME	
YAO Hongzhi, FENG Qingmei, ZHAO Tuan & JI Xiangfei	(689)
Effect of Explosive Source on the Elastic Wave Field of Explosions in Soils	
CHEN Jian, BAI Chunhua, ZENG Yixin, WANG Zhongqi, LI Jianping & YAN Feng	(692)
Study on the Detonation Effects of Emulsion Base in Curved Charging Conditions	
HAN Zhiwei, XIE Lifeng, LI Bin & NI Ouqi	(697)
Design and Verification of Multi-functional Shock Tube	
XIE Lifeng, LI Bin, HAN Zhiwei & SONG Shuzhong	(701)
Experimental Evaluation of Carbon-Carbon Nozzle Inserts for Low-thrust, Long-duration Motors	
ZHANG Xiaoguang, LIU Yu, WANG Changhui, REN Junxue & ZHAN Kai	(704)
Flexseal Nozzle Thermal Protection Characterization	
ZHANG Xiaoguang, LIU Yu, REN Junxue & ZHAN Kai	(709)
Study on Electro Explosion Performance of Al/Ni Bridge Films	
YANG Cheng, WANG Shouxu, SHEN Ruiqi, YE Yinghua, HU Yan & ZHOU Donglai	(714)
New Method of High-g Testing for Explosive Initiator	
LIU Wei, SHEN Ruiqi, YE Yinghua & HU Yan	(719)
Waste HTPB Propellants as Ingredients in Novel Watergel Explosive	
WANG Peng, WEI Xiao'an & HE Weidong	(723)
Erosive Effect on the Burning Rate of Multi-perforation Propellants in Closed Bomb Test	
HE Weidong, WANG Yanbin, WEI Xiao'an & ZHAO Jun	(727)
Combustion Characteristics of Solid Propellant Under Laser Irradiation	
QIN Zhao, SHEN Ruiqi, DU Jiangyuan, WU Lizhi, ZHANG Wei, YE Yinghua, HU Yan & ZHU Peng	(731)
Study of Particle Size and Gradation on the Modified AN Sensitivity	
LIU Liansheng & HU Yonghui	(736)
Experimental Study on the Hazards of Continuous Wave to Exploding Foil	
TONG Honghai, CHU Enyi, REN Wei, XU Huashan & LIU Yan	(740)
Study and Design on SCB Igniter	
REN Wei, AO Chenggang, BAI Yingwei, LIU Jupeng & ZHOU Zhi	(744)
Study of Initiation of Pentaerythritol Tetronitrate by Laser-driven Flyer Plates	
WU Lizhi, SHEN Ruiqi, XU Jiao, CHEN Shaojie, ZANG Xiaowei, YE Yinghua & HU Yan	(748)
Experiments to Estimate 100%p Firing Level of Initiator with Small Samples	
WANG Dianpeng & TIAN Yubin	(753)
Energetic Igniters Based on Al/CuO/B/Ti Reactive Multilayer Films	
ZHU Peng, SHEN Ruiqi, YE Yinghua, ZHOU Xiang, HU Yan & WU Lizhi	(756)
Initial Dynamic Vivacity Ratio of Propellant Charge—Key Sign of Launch Safety of Propellant Charge	
RUI Xiaoting, WANG Yan, JIANG Shiping, CHEN Tao & WANG Guoping	(761)
Study on Interior Ballistic Two-phase Flow Dynamics with Fracture of Propellant Charge	
WANG Yan, RUI Xiaoting, WANG Guoping, CHEN Tao, LI Hongyan & LI Chao	(766)
Laser Initiation System for Solid Rocket Motor Ignition	
ZHANG Quifang, LI Jian, GAO Jie, ZHANG Song & WEI Chao	(770)

Combustion	Properties.	of Minimum	Signature	Propellant	Containing	HNIW
Combustion	1 1 1 Oper nes	OI IVIIIIIIIIIIIIII	Digitature.	1 1 Openani	Commining	TITI AT AA

XU Siyu, ZHAO Fengqi, YI Jianhua, GAO Hongxu, HAO Haixia,

PEI Qing, XING Xiaoling, TAN Yi & LI Shangwen (774)

Impact of Energetic Materials on Properties of Infrared Illuminants

PENG Chenguang, QIAO Xiaojing & MIAO Yanling (779)

Study on Flight Performance of Metal Flyer Plate Driven by Small Charge

XU Xinchun, JIAO Qingjie, CAO Xiong, HU Shuangqi & ZHAO Haixia (783)

Study on Cook-off Test of Sealed HNS Explosive Cylinders under Temperature-programmed Mode

DU Zhenhua, ZHANG Rui, TONG Honghai, LI Fang, FU Dongxiao & MENG Qingying (790)

Applicability Analysis of Sensitivity Test Method

LI Fang, ZHANG Rui, AO Chenggang, FU Dongxiao & DU Zhenhua (794)

Research on Estimation Accuracy of Combinative Method of Up-and-Down Test in Data Statistics Method

FU Dongxiao, ZHANG Rui, LI Fang, DU Zhenhua & LIU Hu (798)

Effect of Heat Loss Factors on Constant Volume Burner Method

HU Songqi, LIU Yingji, XU Qiuli & WU Suli (802)

Study on the High Energy Igniting Powder Fitting for Extreme Environment

HUANG Yinsheng, DUAN Jinjun, JIANG Chong, LI Jintao & WANG Wentao (808)

Development of Pulsed Power Supply Technology in EFIs

LÜ Junjun, ZENG Qingxuan, LI Mingyu, LI Shoudian & ZHOU Licun (813)

SECTION FOUR

MODELING AND CALCULATION

Strong Explosion Model of Gas Dynamics of a Rocket Plume in Upper Atmosphere

MOLCHANOV Alexander & PLATOV Yulii (821)

Kinetics and Mechanisms of Silver Azide Crystals Explosive Decomposition

KRIGER Vadim, KALENSKII Alexander, ANAN'EVA Marina, GRISHAEVA Elena & ZYKOV Igor (825) On the Theory of Ignition and Combustion of Micro- and Aluminum Nanoparticles in Dynamic Conditions

FEDOROV Aleksandr V. & KHMEL Tatyana A. (832)

Application of Computational Modeling for Explosive Hazard Assessments

CLUTTER J. Keith (841)

Modelling of Underwater Sympathetic Reaction Tests for Composition B

LU Jing Ping (854)

Theoretical Study and Structural Analysis of 2,6,8,12-Tetra Acetyl 4,10-Dibenzyl Hexaaza Isowurtzitane (TADBIW) by DFT Method

BAYAT Yadollah & MOHAMADZADEH Jahani Peyman (861)

A Thermodynamic Study on Solubility of Dimethyl Aminoethylchloride Hydrochloride and Sodium Azide in Water for Production of DMAZ

PAKDEHI Shahram G., JAAFARIKHAH K. & SANAEE H. (869)

Theoretical Evaluation on Specific Impulse of DMAZ Fuel with Various Liquid Oxidizers

PAKDEHI Shahram G., AZHDARI S. & HASHEMI A. (873)

Numerical Simulation Investigation on Propagation of Detonation Wave for Small Charge Diameter

ZHANG Shaoming, HU Shuangqi, ZHAO Haixia, JIAO Qingjie & XU Xinchun (879)

Simulation Research on Liquid Sheet Formed by Jet Impingement Using SPH

QIANG Hongfu, LIU Hu, CHEN Fuzhen & HAN Yawei (884)

Numerical Analysis of 2-D AP/HTPB Sandwich Propellant Coupled Combustion Model

LIU Xianyu, ZHOU Zhiqing, ZHOU Wei & YANG Yuecheng (890)

AP Combustion Simulation Using Detailed Chemical Kinetics

ZHAO Yu, BAO Futing, WANG Zhong & HU Shengchao (896)

Rubber/Steel Composite Structures Effect of Non-Contact Explosive Loading under Cylindrical Explosive Layer

LU Yabing, SUN Yuxin, ZHANG Jin & SU Hui (901)

Study on Effect of Thermal-Plastic on Projectile Penetration Concrete Target

SUN Yuxin, ZHANG Jin, LU Yabing & HUANG Yinsheng (906)

Research of Calculating Decomposition Activation Energy of Single-base Propellant with Kissinger Method

ZHANG Xiaodong, MA Hongxi & LIU Jiping (911)

A Microscopic Model Predicting Hot-spot Ignition of Energetic Crystals under Drop-weight Impact

WU Yanqing & HUANG Fenglei (915)

Calculation for Primary Combustion Characteristics of Boron-based Fuel-rich Propellant Based on GA-BP Neural Network

WU Wan'e & ZHU Zuoming (923)

Energy Property of Composite Double Base Propellant Containing HNIW

XU Siyu, ZHAO Fengqi, GAO Hongxu, YI Jianhua, HAO Haixia, XIAO Libai, AN Ting & YAO Ergang (927) Molecular Dynamics Simulation of Al and Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine Composite

LI Wei, GUO Xiang, WU Fang, TANG Gen, XU Haiyuan, BAO Xi & PANG Aiming (931)

Numerical Calculation and AKTS Simulation of Thermal Explosion Model for a Kind of Fireworks

LIU Haiying, QIAN Xinming, HUANG Ping & LIU Zhenyi (935)

Numerical Simulation of Blast Shock Waves Propagation Effected by Cross Section Shape of Tunnel

HAN Feng & HU Yang (941)

SECTION FIVE

MISCELLANEOUS

Green Primary Explosives

CHENG G., MEHTA N. & OYLER K. (949)

Uncertainty in Risk Analyses and Corporate Ethics

WINDHORST Jan C. A. (954)

Platinum Recovery from Waste Materials of the Process of Ammonium Perchlorate Production

KASHI A., MOMENIZADEH PANDAS H. & HASSANZADEH TOLOTI M. A. (961)

Photosentisation of Metal Oxides

ASSOVSKIY I. G., BALENKO V. G., NIKITAEV Yu A.,

KOLESNIKOV-SVINAREV V. I. & KUZNETSOV G. P. (966)

Reaction Mechanism of Al/Ti Multilayer Films

WANG Liang, HE Bi, JIANG Xiaohua, FU Qiubo & WANG Liling (969)

Ablative Performances of Poly(butyl methacrylate) Modified with Si-containing Methacrylates

WANG Xinlong, WANG Fei & YANG Jun (973)

Review of the Application of Nanotechnology in Solid Rocket Propellants and Related Fields

LIN Zhiyuan, XU Dandan, JIANG Xiaoqiong & YAN Daqing (976)

Time-of-Flight Mass Spectrometry Study of Laser-induced Dissociation of Hexahydro-1,3,5-trinitro-1,3,5-triazine
ZHANG Wei, SHEN Ruiqi, WU Lizhi ,QIN Zhao ,YE Yinghua, HU Yan & ZHU Peng (982)
Study on the Smoke Based on Metal-coated Carbon Fibers to Camouflage 8 Millimeters Wave
QIAO Xiaojing, LI Yan, LI Wangchang & REN Qingguo (987)
Study on Factors Influencing the Release Reliability of Separation Nut
LIU Lan, CHEN Minhui, REN Wei, XIE Ruizhen, XUE Yan, REN Xiaoming
ZHANG Jingxin & PENG Zhiming (992)
Optimization of Moduling of Properllants Aging Investigated According to NATO AOP-48 ED.2 Test Procedure
RODUIT Bertrand, HARTMANN Marco, FOLLY Patrick, SARBACH Alexandre, GUILLAUME Pierre
JEUNIEAU Laurence & SHI Weifan (995)
Study on Failure Mechanism of Solid Propellant by the Drop Hammer Impact Test
WANG Jiangning, XIE Bo, ZHENG Wei, YUAN Zhifeng & YAO Baoxue (1002)
Author Index (1005)
Subject Index (1010)

SECTION ONE SYNTHESIS AND MANUFACTURE

Synthesis and Characterization of 3,6-di(nitramino)-1,2,4,5-tetrazines

RUDAKOV G. F., USTINOVA T. V. & ZHILIN V. F.

(Mendeleev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia)

Abstract: The synthesis of 3(6)-nitramino-1,2,4,5-tetrazines via nitration of 3,6-disubstituted s-tetrazines with nitric acid is reported. The effect of 3(6)-amino-1,2,4,5-tetrazine structure and nitric acid concentration on the direction of the nitration reaction is shown. The synthesized products have been characterized by IR, UV, NMR spectroscopy, and DSC analysis.

Keywords: 3,6-disubstituted 1,2,4,5-tetrazines; nitration; nitramines; thermal stability

1 Introduction

The 3,6-substituted 1,2,4,5-tetrazines have attracted much attention in the field of energetic compounds chemistry. These high-nitrogen substances have good density and high positive heat of formation. In view of high energy content, high density, and good thermal stability many of these substances have been proposed as ingredients in some energetic compositions^[1-16]. By now a whole number of symmetrical and unsymmetrical derivatives of 1,2,4,5-tetrazines have been explored, among them energetic ones, which contain substituents in the 3- and 6-positions. However, little information is available in literature on the synthesis of nitramino-1,2,4,5-tetrazines^[4,15,16]. Only a few examples of these functionalized tetrazines have been reported that makes it difficult to evaluate properties of such materials (Scheme 1).

Scheme 1 Nitration of 3,6-diamino-1,2,4,5-tetrazine

To elucidate the relationship between the chemical structure of nitramino substituent and thermal stability of substituted tetrazines, a series of symmetrical 3,6-di(nitramino)-1,2,4,5-tetrazines have been synthesized and characterized in the present work.

2 Results and Discussion

The synthesis of 3(6)-nitramino-1,2,4,5-tetrazines was realized in two steps starting from readily available 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine (1)^[17].

Scheme 2 Synthesis 3(6)-alkylamino substituted 1,2,4,5-tetrazines (2, 3)

$$\label{eq:R} \begin{split} R = H(a), & \ CH_3(b), \ C_2H_5(c), \ i\text{-Pr(d)}, \ t\text{-Bu(e)}, \ HOCH_2CH_2(f), \\ & \ CH_3CH(OH)CH_2(g) \end{split}$$

The nucleophilic substitution of the dimethylpyrazol moiety with different alkylamines^[18], aminoalkohols, and ammonia was carried out in acetonitrile, ethanol, and NMP in the presence of water or without it. We have found that the nucleophilic substitution occurs in two steps with spontaneous oxidation of the heterocycle (Scheme 2). The reaction of substitution proceeds selectively, and the yield of 3,6-bis(alkylamino)-1,2,4,5-tetrazines (2a-d,f,g) (30-76%) depends on the final product isolation and purification methods.

Investigation of the nitration reaction was performed in 70%, 98% nitric acid and mixtures of sulfuric and nitric acids. The course of the reaction was monitored by TLC. The structure of obtained products was confirmed by IR, UV, and NMR spectroscopy.

It was found that nitration in concentrated nitric acid leads to formation of bis(alkylnitramino)-1,2,4,5-tetrazines (4a-g), except for N,N'-diisopropyl-1,2,4,5-tetrazine-3,6-diamine (2d) (Scheme 3). The rate of nitration reaction is slightly dependent on the nature of the substituent (reaction time is 1-2 hours) and the yield of nitration products is 45-66%. In the case of amino alcohol derivatives (2f,g) the N-nitration occurs together with the O-nitration (4f,g).

Reaction in dilute nitric acid (56-70%) leads to the selective formation of mono nitration products (5a-d). Increasing the temperature and reaction time did not give positive results.

Scheme 3 Nitration of 3,6-bis(alkylamino)-1,2,4,5-tetrazines (2)

The nature of the substituent at the amine nitrogen atom plays a significant role in the nitration of 3,6-bis(alkylamino)- and mono(alkylamino)-1,2,4,5-tetrazines. Nitration of 6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine-3-amine (3a) and 6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-methyl-1,2,4,5-tetrazine-3-amine (3b) with concentrated nitric acid form nitramines in good yields. 6-(3,5-Dimethyl-1H-pyrazol-1-yl)-N-isopropyl-1,2,4,5-tetrazine-3-amine (3d) does not form nitration products even when heated in the presence of ammonium chloride or in reaction with sulfuric-nitric acid mixture (Scheme 4). The behavior of 3e in concentrated nitric acid is different from the nitration of 2-(t-butylamino)-4,6-bis(trinitromethyl)-1,3,5-triazine^[19]. The reaction is accompanied by gas evolution at room temperature and leads to formation of 6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-nitro-1,2,4,5-tetrazine-3-amine (6a).

Intermediate N-(t-butyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-nitro-1,2,4,5-tetrazine-3-amine (6e) was not recorded, therefore the mechanism of nitration is not clear and requires further study. The reaction can proceed both on the mechanism of substituted nitration, and with prior removal of t-butyl group under acidic conditions.

Scheme 4 Nitration of 3-alkylamino-6-(3,5-dimethyl-1*H*-pyrazol-1-yl)-1,2,4,5-tetrazines (3)

In contrast to bis(alkylamino)-1,2,4,5-tetrazines, mono(alkylamino)-1,2,4,5-tetrazines (3) do not form nitramines in the reaction with 70% nitric acid. This fact can be explained by strong deactivating effect of the dimethylpyrazol moiety, similar to nitramine group. Quantum chemical calculations performed on the basis of 3-21G, show that the presence of these substituents at position 6 decreases the bond length between the nitrogen atom in position 3 and the heterocycle (d/C₃N₂/, Table 1). The results show that there is a shift of electron density from the amino group to the s-tetrazine ring. This effect may explain the negative results of nitration of monoalkylamino-1,2,4,5-tetrazine in 70% nitric acid.

Influence of NNO₂ and DMP substituents on the electronic system of tetrazines can be explained on the basis of analysis of UV spectra. Using ethylamino-1,2,4,5-tetrazine derivatives as an example, it has been shown that the transition from 2c to 3c and 5c is accompanied by a strong hypsochromic shift of the visible spectrum, corresponding to $n-\pi^*$ transition (60 and 80 nm, respectively, in methanol). This indicates to a substantial delocalization of the heterocycle electronic system and, as a consequence, the conjugation of electrons of the substituent in position 3 with the tetrazine cycle.

All the synthesized nitro derivatives of 3(6)-alkylamino-1,2,4,5-tetrazine are colored crystalline substances with melting points from 70 to 150°C. Product 4g was isolated as a viscous oil and, as it follows from the results of NMR spectroscopy, was a racemic mixture.

The thermal behavior of new tetrazines has been studied by means of DSC analysis. Exothermic decomposition of all samples is observed at 100-195°C (Table 2). As could be expected, mononitro-1,2,4,5-tetrazine derivatives exhibit higher stability compared with 3,6-bis(nitramino)-1,2,4,5-tetrazines. The decomposition of 4b,f,g and 5b reveals two distinct exotherms.

Table 1 Calculated charge (q) and bond length (d) of 6-substituted 3-amino-1,2,4,5-tetrazines at the B3LYP/3-21G level

at the BSLYF	7/3-21G level				
		N N R1 N	3 2N C R ₂ N		
R_1	R_2	q (C ₃)	q (N ₂)	d/C ₃ N ₂ /,Å	Bond Order
NH_2	Н	0,968	-0,944	1,352	0.998
$NHNO_2$	Н	1,019	-0,938	1,330	1.108
DMP^*	Н	1,006	-0,941	1,336	1.052
CH ₃ NH	CH_3	1,003	-0,928	1,350	1.075
CH ₃ NNO ₂	CH_3	1,030	-0,927	1,337	1.137
DMP	CH_3	1,037	-0,928	1,336	1.070
C_2H_5NH	C_2H_5	1.005	-0.922	1.352	1.069
C ₂ H ₅ NNO ₂	C_2H_5	1.053	-0.923	1.330	1.175
DMP	C_2H_5	1.042	-0.928	1.339	1.060

^{*}DMP - 3,5-dimethylpyrazol-1-yl

Table 2 DSC data

Table 2 BSC data							
Compound	$T_{ m onset}/{}^{\circ}{ m C}$	$T_{\rm max}^{-1}/^{\circ}{\mathbb C}$	$T_{\rm max}^{2}/^{\circ}{\mathbb C}$	$Q_{\rm dec}/({\rm kJ\cdot kg^{-1}})$	$Q_{\rm dec}/({\rm kJ\cdot kg^{-1}})$		
5a	163	177	-	1041	164		
4a	103	130	-	2357	476		
5b	122	148	195	807	149		
4b	137	163	171-	1738	400		
5c	113	148	-	707	151		
4c	130	155	-	1459	376		
4f	119	148	154	1750	665		
4g	96	123	152	1394	569		

3,6-Bis(nitramino)-1,2,4,5-tetrazines are chemically stable in the dry state, but their solutions in the presence of moisture undergo denitration reaction at different rates. Investigation of this process by NMR spectroscopy, carried out by the example of polyfunctional nitro compound 4f, has showed that hydrolysis occurs by one nitrogen atom to form stable compound 7 (Scheme 5).

$$O_2N$$
 O_2N
 O_2N

Scheme 5 Denitration of 4f

In contrast to the 1,3,5-triazine^[19,20], alkaline hydrolysis of 4 leads to formation of mono(nitramino)-1,2,4,5-tetrazines. In this way 4a reacts with aqueous ammonia to form ammonium salt of N-nitro-1,2,4,5-tetrazine-3,6-diamine (8), previously synthesized from $5a^{[10]}$ (Scheme 6).

Scheme 6

The structures of compounds 4a—e were confirmed by ${}^{1}H$ NMR and IR spectroscopy. In the IR spectra, an absorption maximum is observed at 1548-1583 cm⁻¹ and 1257-1283 cm⁻¹, which is typical of NO_{2} group. Compounds 5a-d give strong stretching absorption bands at 3250-3370 cm⁻¹ in IR spectra and resonance signals of the NH proton in the range 6.03-6.09 ppm as singlet in ${}^{1}H$ NMR spectra.

The analysis of the IR spectra suggests the presence of strong interaction between the functional group in the *para*-position and the nitroamine fragment. The replacement of alkyl by hydrogen results in the appreciable shift in antisymmetrical vibration band of NO₂ to the high-frequency region. In the IR spectra of 4-6a, the symmetrical vibrations of the nitro group are recorded in the ordinary region (1274, 1294, 1278 cm⁻¹), and the field of the antisymmetrical vibrations depends on the properties of substituent in the *para*-position of heterocycle (1629, 1616, 1604 cm⁻¹). Replacing of the amino group by dimethylpyrazole or nitramine fragments leads to higher rigidity of NO₂ group because of increasing conjugation of NNO₂ with the electronic system of 1,2,4,5-tetrazine.

3 Experimental

The ¹H and ¹³C NMR spectra were recorded on a Mercuryplus instrument (400,46 MHz for ¹H and 100,70 for ¹³C) in DMSO-d6 or CDCl₃ solution. Chemical shifts are reported in ppm relative to TMS as an internal reference. The IR spectra of new compounds were measured on a Termo Nicolet 360 FTIR spectrometer in range 400-4000 cm⁻¹ in KBr pellets. UV spectra were recorded on a Specord M-40 spectrometer. LC-MS analyses were conducted on a Thermo Finnigan mass spectrometer, using APCI interface in the negative- and positive-ion modes.

The melting points were measured on Boetius heating table at the heating rate 4°C min⁻¹. DSC studies of the thermal stability were performed on a DSC-600 instrument. The Heating rate was 8°C min⁻¹ in the temperature range 20-350°C. The course of the reaction was monitored by TLC using Sorbfil PTLC-AF-A-UV plates.

Compound 1 was synthesized using a published procedure^[21]. Characteristics of 2a-f, 3a-f, 4a, 5a, 8 are in accordance with previously published data^[10,16,18,22,23]. Compounds 2g and 3g were synthesized for the first time using analogous procedure.

N,*N*'-di(2-hydroxypropyl-1)-1,2,4,5-tetrazine-3,6-diamine (2g): yield 30%, crimson crystals, mp 102-105°C, R_f =0.33 (EtOAc); UV (MeOH), λ_{max} (lgε): 255 (4.84), 469 (3.23), 502 (3.16); IR (KBr), v (cm⁻¹): 3473, 3348, 3250, 3107, 2969, 2932, 2900, 1544, 1426, 1371, 1098, 1049, 932, 837; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 5.53 (br.s, 1H, NH), 4.05-4.12 (m, 1H, CH), 3.62-3.68 (m, 1H, CH₂), 3.31-3.38 (m, 1H, CH₂), 4.87 (br.s, 1H, OH), 1.27 (d, 3H, CH₃, J=6.4); ¹³C NMR (DMSO-d₆, 100 MHz), δ (ppm): 160.68, 64.80, 48.36, 21.21.

6-(3,5-dimethyl-1*H***-pyrazol-1-yl)-***N***-(2-hydroxypropyl-1)-1,2,4,5-tetrazin-3-amine (3g)**: yield 65%; orange crystals, mp 117-120°C, R_f =0,33 (EtOAc); UV (MeOH), λ_{max} (lgε): 273 (4.47), 469 (3.19), 502 (2.73); IR (KBr), v (cm⁻¹): 3455, 3259, 3141, 3070, 2965, 2928, 1593, 1569, 1482, 1416, 1280, 1098, 1043, 974, 794, 553; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 8.76 (br.s, 1H, NH), 6.16 (br.s, 1H, CH), 4.83 (br.s, 1H, OH), 3.89 (br.s, 1H, CH), 3.36-3.40 (m, 2H, CH₂), 2.36 (br.s, 3H, CH₃), 2.20 (br.s, 3H, CH₃), 1.11 (d, 3H, CH₃, J=5.0 Hz); ¹³C NMR (DMSO-d₆, 100 MHz), δ (ppm): 161.20, 156.41, 149.66, 140.98, 108.08, 64.03, 48.06, 20.85, 13.06, 11.90.

N,*N*'-dimethyl-*N*,*N*'-dinitro-1,2,4,5-tetrazine-3,6-diamine (4b): yield 66%, pink crystals, mp 140-144°C, R_f =0.78 (ЭA:heptane/3:1); IR (KBr), ν (cm⁻¹): 3048, 3023, 2835, 1566, 1437, 1395, 1275, 1183, 1134, 967, 931, 749, 528; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 4.04 (s, 3H, CH₃).

N,N'-diethyl-*N,N'*-dinitro-1,2,4,5-tetrazine-3,6-diamine (4c): yield 46%, pink crystals, mp 68-69°C, $R_{\rm f}$ =0.76 (EtOAc:heptane/3:1); IR (KBr), ν (cm⁻¹): 2985, 2938, 2876, 1573, 1549, 1421, 1257, 1165, 1186, 985, 823, 748, 550; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 4.51-4.56 (m, 2H, CH₂), 1.50 (d, 3H, CH₃, J=7.1 Hz).

N,N'-di(2-nitroxyethyl-1)-*N,N'*-dinitro-1,2,4,5-tetrazine-3,6-diamine (4f): yield 45%, pink crystals, mp 82-84°C, R_f =0.82 (EtOAc:heptane/3:1); IR (KBr), ν (cm⁻¹): 3044, 2962, 2917, 2889, 2844, 1640, 1583, 1413, 1277, 1148, 973, 892, 849, 746, 706, 530; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 4.87 (t, 2H, CH₂O, J=4.6 Hz), 4.93 (t, 2H, CH₂N, J=4.6 Hz).

N,N'-di(2-nitroxypropyl-1)-*N,N'*-dinitro-1,2,4,5-tetrazine-3,6-diamine (4g): yield 65%, red oil, R_f =0.87 (EtOAc:heptane/3:1); IR (KBr), ν (cm⁻¹): 3388, 3146, 2992, 2933, 2852, 1635, 1569, 1277, 1056, 882, 852, 755, 571; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 4.05-4.11 (m, 2H, CH₂), 3.77-3.84 (m, 2H, CH₂), 1.42 (d, 3H, CH₃), 5.54-5.63 (m, 1H, CH).

N,*N*'-dimethyl-*N*-nitro-1,2,4,5-tetrazine-3,6-diamine (5b): yield 76%; orange crystals, mp 90-91°C, $R_{\rm f}$ =0.71 (EtOAc:heptane/3:1); IR (KBr), ν (cm⁻¹): 3370, 3060, 2950, 2876, 1609, 1547, 1483, 1446, 1414, 1380, 1285, 1151, 1052, 979, 951, 837, 788, 754, 630, 556; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 6.03 (br.s, 1H, NH), 3.84 (s, 3H, CH₃NNO₂), 3.27 (d, 3H, CH₃NH, J=5.5 Hz).

N,*N*'-diethyl-*N*-nitro-1,2,4,5-tetrazine-3,6-diamine (5c): yield 57%; orange crystals, mp 97-100°C, R_f =0.38 (CH₂Cl₂); IR (KBr), ν (cm⁻¹): 3255, 3147, 3071, 2986, 2940, 2892, 1593, 1554, 1474, 1345, 1305, 1269, 1127, 1085, 1055, 976, 931, 826, 806, 685, 569; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 6.09 (br.s, 1H, NH), 4.29 (d, 2H, CH₂NNO₂, J=6.8 Hz), 1.70 (t, 2H, CH₂NH), 1.38 (d, 6H, CH₃, J=5.03 Hz).

N,N'-diisopropyl-N-nitro-1,2,4,5-tetrazine-3,6-diamine (5d): yield 65%; orange crystals, mp 96-97°C, R_f =0.44 (CH₂Cl₂); IR (KBr), ν (cm⁻¹): 3251, 3147, 3071, 2975, 1599, 1548, 1493, 1282, 1124, 1055, 985, 819, 758, 709, 553; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 5.91 (br.s, 1H, NH), 5.07-5.14 (m, 1H, CHNNO₂), 4.33-4.42 (m, 1H, CHNH), 1.36-1.40 (m, 12H, CH₃).

6-(3,5-dimethyl-1*H***-pyrazol-1-yl)-***N***-nitro-1,2,4,5-tetrazin-3-amine (6a):** yield 70%, pink crystals, mp 137-140°C, R_f =0.56 (EtOAc:MeOH/5:1); IR (KBr), ν (cm⁻¹): 3430, 2967, 2932, 2659, 1615, 1583, 1498, 1461, 1294, 1265, 1089, 1007, 944, 815, 746, 553; ¹H NMR (DMSO-d6, 400 MHz), δ (ppm): 6.23 (s, 1H, =CH), 2.73 (s, 3H, CH₃), 2.48 (br.s, 1H, NH), 2.43 (br.s, 3H, CH₃).

6-(3,5-dimethyl-1*H***-pyrazol-1-yl)-***N***-methyl-***N***-nitro-1,2,4,5-tetrazin-3-amine (6b): yield 66%, pink crystals, mp 85-88°C, R_{\rm f}=0.62 (EtOAc:heptane/2:1); IR (KBr), \nu (cm⁻¹): 3003, 2931, 2854, 1583, 1499, 1453, 1281, 1174, 1109, 1064, 964, 823, 769, 634, 540; ¹H NMR (CDCl₃, 400 MHz), \delta (ppm): 6.21 (s, 1H, =CH), 3.98 (s, 3H, CH₃NNO₂), 2.74 (s, 3H, CH₃), 2.39 (s, 3H, CH₃).**

6-(3,5-dimethyl-1*H***-pyrazol-1-yl)-***N***-(2-nitroxyethyl-1)-***N***-nitro-1,2,4,5-tetrazin-3-amine (6f): yield 43%, pink crystals, mp 114-116°C, R_f=0.80 (EtOAc); IR (KBr), \nu (cm⁻¹): 3005, 2957, 2906, 1637, 1589, 1571, 1504, 1460, 1432, 1418, 1328, 1288, 1274, 1250, 1138, 1127, 1108, 957, 932, 885, 855, 818, 768, 758, 675, 563; ¹H NMR (CDCl₃, 400 MHz), \delta (ppm): 6.22 (br.s, 1H, =CH), 4.93 (t, 2H, CH₂O, J=5.0 Hz), 4.79 (t, 2H, CH₂N, J=5.0 Hz), 2.74 (s, 3H, CH₃), 2.39 (s, 3H, CH₃).**

4 Conclusions

The synthesis and characterization of 3(6)-nitramino-s-tetrazines have been conducted in this study. Nitration of 3(6)-amino derivatives of s-tetrazine with nitric acid of different concentrations has been studied. The depth of nitration of 3,6-bis (alkylamino)-1,2,4,5-tetrazines has been shown to depend on both concentration of nitric acid and nature of alkyl substituent at the exocyclic nitrogen. The synthesized 3(6)-nitramino-s-tetrazines have been investigated in order to find relationships between the structure and thermal stability.

References

- [1] Licht H H, Ritter H. New energetic materials from triazoles and tetrazines. J Energ Mater, 1994, 12(4): 223-225.
- [2] Chavez D E, Hiskey M A. Synthesis of the bi-heterocyclic parent ring system 1,2,4-triazolo[4,3-b][1,2,4,5] tetrazine and some 3,6-disubstituted derivatives. J Heterocycl Chem, 1998, 35: 1329-1332.
- [3] Löbbecke S, Pfeil A, Krause HH, Sauer J, Holland U. Thermoanalytical screening of nitrogen-rich substances. Prop Explos Pyrotech, 1999, 24: 168-175.
- [4] Chavez D E, Hiskey M A. 1,2,4,5-Tetrazine based energetic materials. J Energetic Materials, 1999, 17: 357-377.
- [5] Chavez D E, Hiskey M A, Gilardy R D. 3,3'-Azobis(6-amino- 1,2,4,5-tetrazine): a novel high-nitrogen energetic materials. Angew Chem Int Ed, 2000, 39(10): 1791-1793.
- [6] Kerth J, Lubbecke S. Synthesis and characterization of 3,3-azobis(6-amino-1,2,4,5-tetrazine) DAAT—a new promising nitrogen-rich compound. Prop Explos Pyrotech, 2002, 27: 111-118.
- [7] Chavez D E, Hiskey M A. Gilardi R.D. Novel high-nitrogen materials based on nitroguanyl-substituted tetrazines. Org Lett, 2004, 6, 17: 2889-2891.
- [8] Chavez D E, Hiskey M A. Naud D.L. Tetrazine Explosives. Prop Explos Pyrotech, 2004, 29(4): 209-215.
- [9] Chavez D E, Tappan B C, Hiskey M A, et al. New High-Nitrogen Materials Based on Nitroguanyl-Tetrazines: Explosive Properties, Thermal Decomposition and Combustion Studies. Prop Explos Pyrotech, 2005, 30(6): 412-417.
- [10] Gao H, Wang R, Twamley B, Hiskey M A. Shreeve J.M. 3-Amino-6-nitramino-tetrazine (ANAT) based energetic salts. Chem Commun, 2006: 4007-4009.
- [11] Joo Y-H, Twamley B, Garg S, Shreeve J M. Energetic Nitrogen-Rich Derivatives of 1,5-Diaminotetrazole. Angew Chem Int Ed. 2008, 47: 6236-6239.
- [12] Sheremetev A B, Palysaeva N V, Struchkova M I. The first synthesis of 3-nitro-4-[(s-tetrazin-3-yl)amino]furazans. Mendeleev Commun, 2010, 20: 350-352.
- [13] Chavez D E, Gilardi R D. Synthesis of 3,6-bis(3-azido-1,2,4-triazol-1-yl)-1,2,4,5-tetrazine. J Energ Mater, 2009, 27: 110-117.
- [14] Chavez D E, Parrish D A. New Heterocycles from Tetrazines and Oxadiazoles. J Heterocycl Chem, 2009, 46: 88-90.
- [15] Guither W D. 3,6-Bis-Substituted s-Tetrazines. Heterocycles, 1979, 12(6): 745-749.
- [16] Zhu Xizeng, Tian Ye. Synthesis and properties of tetrazine explosives//1st International Symposium Pyrotechnics and Explosives, Beijing, 1987:241-244.
- [17] Scott F L. Neuer Syntheseweg zu Tetrazin-Verbindungen. Angew Chem, 1957, 69(15): 506
- [18] Cutivet A, Leroy E, Pasquinet E, Poullain D. Nucleophilic substitution with amines: dihydro-1,2,4,5-tetrazines are more useful precursors than 1.2,4.5-tetrazines. Tetrahedron Lett, 2008, 49: 2748-2751.
- [19] Shastin A V, Godovikova T I, Korsunskii B L. Trisubstituted 1,3,5-Triazines. 4. Synthesis of 2-nitroamino-4,6-bis(trinitromethyl)-1,3,5-triazine. Chem Heterocyclic Comp, 1999, 35(1): 75-77.
- [20] Atkinson E R. The Nitration of Melamine and of Triacetylmelamine. J Am Chem Soc, 1951, 73: 4443-4444.
- [21] Coburn M D, Buntain G A, Harris B W, et al. An Improved Synthesis of 3,6-Diamino-1,2,4,5-tetrazine II From Triaminoguanidine and 2,4-pentanedione. J Heterocycl Chem, 1991, 28: 2049-2050.
- [22] Novak Z, Bostai B, Csekei M, Lerincz K, Kotschy A. Selective Nucleophilic Substitutions on Tetrazines. Heterocycles, 2003, 60(12): 2653-2668.
- [23] Rusinov G L, Latosh N I, Ganebnykh I I, et al. Sinthesis of 1,2,4,5-Tetrazines, Symmetrically and Unsymmetrically 3.6-Disubstituted by N-Nucleophiles. Russian Journal of Organic Chemistry, 2006, 42(5): 757-765.

Nitration of Derivatives of

2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane

YUDIN N. V., ZBARSKY V. L. & FILIMONOVA E. V.

(Mendeleev University of Chemical Technology, 9 Miusskaya Square 125047, Moscow, Russia)

Abstract: An HPLC and HPLC-MS study of the product composition and rate of nitration 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW), 2,4,6,8,12-pentaaacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (PAIW), 2,4,6,8,10,12-hexaacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (GAIW) and 2,6,8,12-tetraacetyl-4,10-diformyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADFIW) in sulfuric-nitric acid mixtures. It is shown that rate of nitration TAIW and GAIW are similar, rate of nitration PAIW several times more slowly.

Keywords: 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane; 2,4,6,8,12-pentaaacetyl-2,4,6,8,10,12-hexaazaisowurtzitane;

2,4,6,8,10,12-hexaacetyl-2,4,6,8,10,12-hexaazaisowurtzitane; 2,6,8,12-tetraacetyl-4,10-diformyl-2,4,6,8,10,12-hexaazaisowurtzitane, nitration

1 Introduction

In recent decades, has been synthesized a number of promising compounds, which include hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20)^[1]. Scheme of its synthesis involves three main stages: building isowurtzitane cage, reductive debenzylation, nitration.

HNIW can be obtained from a number of starting compounds: 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW), its mono- and di- formate salts, 2,6,8,12-tetraacetyl-4,10-diformyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADFIW), 2,6,8,10,12-hexaacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADBIW), dinitro- and dinitroso derivatives, 2,4,6,8,12-pentaaacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (PAIW), 2,6,8,10,12-hexaacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (GAIW) and other derivatives^[2,3]. Industrial application has nitration using TAIW and TADFIW. On nitration GAIW reported in^[4], data on the rate of nitration PAIW in the literature not available. Nitration of isowurtzitane derivatives a multistep process, as a result which is formed series of nitro compounds, their composition by influences to quality of the GNIW.

The literature shows methods of nitration of hexaazaisowurtzitane derivatives using as a are different nitrating systems: nitric acid, solution of ammonium nitrate in concentrated nitric acid, sulfur-nitric acid mixtures^[2]. In this study, we used sulfuric-nitric acid mixture, providing a higher rate compared with nitric acid and ammonium nitrate solution in it.

2 Experiment

We have studied of the composition intermediates products from the nitration TAIW, PAIW, GAIW and TADFIW. TAIW was obtained by the standard scheme two stepwise debenzylation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexazaisowurtzitane, its purification was carried out by recrystallization from aqueous dimethylformamide. PAIW and GAIW synthesized from it by acylation a mixture of acetic acid and acetic anhydride^[3], TADFIW obtained by formylation TAIW formic acid. The identity and purity of obtained compounds was confirmed by IR and NMR spectroscopy, gas and liquid chromatography-spectroscopy. In the table 1 shows the retention times and a relative contents of substances formed by nitration of derivatives hexaazaisowurtzitane.

Table 1 Retention times and a relative contents of substances formed by nitration of derivatives hexaazaisowurtzitane

Number of NO ₂	N	DT/:	Initial compound			
groups	Name of compounds	RT/min	TAIW	PAIW	GAIW	
1	PANIW	0.56	100	100	100*	
	2,6,8,12-TA-4,10-DNIW	0.89	50	60	4	
2	unidentified TADNIW	0.99	-	-	traces	
2	2,6,10,12-TA-4,8-DNIW	1.03	-	40	10	
	unidentified TADNIW	1.21	-	-	9	
	6,8,12-TA-2,4,10-TNIW	1.75	50	45	traces	
3	4,10,12-TA-2,6,8-TNIW	2.11	-	5	10	
	6,10,12-TA-2,4,8-TNIW	2.56	-	50	90	
	8,12-DA-2,4,6,10-TNIW	2.79	20	-		
4	unidentified DATNIW	3.14	-	-	*	
	6,12-DA-2,4,8,10-TNIW	3.34	80	40	*	
	unidentified DATNIW	3.76	-	60		
<i>-</i>	2-APNIW	4.32	100	85	65	
5	4-APNIW	4.57	-	15	45	
6	HNIW	5.44	100	100	100	

^{* -} mixture of isomers

Hypersil-ODS 100*5 mm, CH_3CN-H_2O from 20/80 to 80/20 in 10 minutes.

To isolate the products of nitration sample was diluted with water and neutralized by sodium bicarbonate, extraction with ethyl acetate. Analysis of nitro compounds was carried out by liquid chromatography (LC) and liquid chromatography-mass spectrometry (LC-MS) with chemical ionization at atmospheric pressure and the registration of negative ions. It should be noted that the molecular ions of all compounds except the HNIW fixed in the form adducts with formate ion ([M+45]). Some of the intermediate products were isolated by using preparative thin layer chromatography and characterizations by IR and NMR spectroscopy. Spectral data are presented in tables 2 and 3.

The nitration of TAIW, PAIW, GAIW and TADFIW was carried out in systems containing 78% HNO₃, 21% H_2SO_4 , 1% H_2O and 89% HNO₃, 10,5% H_2SO_4 , 0,5% H_2O at temperatures 30°C, 40°C, 60°C and 75 °C and reaction time from 30 min to 240 min.

Table 2 NMR spectra of derivatives isowurtzitane

Substance	Chemical shift, ppm						
Solvent	-COCH ₃	-CHO	-NH	C-H, position3, 5, 9, 11	C-H,position 1, 7		
TAIW DMSO d6	2.00 (s, 12 H)		4.2 (br. s 1H)	5.33 (s, 4 H)	6.13-6.3 (br. m, 2 H)		
TAIW D_2O	2.01 (s, 12 H)	-	-	5.54-5.45 (m, 4 H)	6.16- 6.57 (m, 2 H)		
PAIW DMSO d6	2.03 (s, 12H) 2.30 (s, 3H)	-	4.53-4.76 (m, 1H)	5.56 (s, 4 H)	6.22-6.73 (m, 2H)		
PAIW DMSO d6	2.06 (s, 12 H) 2.28 (s, 3H)	-	-	6.45-6.66 (m, 4H)	6.93 (s, 2H)		
TADFIW DMSO d6	2.07-1.98 (m,12H)	8.26 (s, 2H)	-	6.71-6.75 (m, 4H)	6.19- 6.60 (m, 2H)		
2,6,8,12-TA-4,10-DNIW, DMSO d6	2.10 (s, 12H)	-	-	7.37 (s, 4 H)	6.67 (br. s, 1 H) 6.84 (br. s, 1 H)		
6,8,12-TA-2,4,10-TNIW, DMSO d6	2.09 (s, 3H) 2.12 (s, 6H)	-	-	7.29 (br. s, 1H) 6.53-7.38 (m, 3H)	6.85 (br. s, 1H) 7,77 (d, J=7.8, 1H)		
6,12-DA-2,4,8,10-TNIW, DMSO d6	2.07 (s, 3H) 2.14 (s, 3H)	-	-	-	7,59 (dd, J=8.15, 2.85, 1H) 7,79 (dd, J=8.15, 2.85, 1H)		
6,12-DA-2,4,8,10-TNIW, DMSO d6	2.11 (s, 6H)	-	-	7.52 (m, J=7.74, 2H) 7.84, (m J=7.74, 2H)	7.38(s, 2 H)		
2-APNIW, DMSO d6	2.13 (s, 3H)	-	-	7.85-7.95 (m, 4H)	7.51 (d, J=5.6, 1H) 7.61 (dd, J=8.23, 2.74, 1H)		
HNIW DMSO d6	-	-	-	7.99 (s, 4H)	8.06 (s, 2H)		

Table 3 IR spectra of derivatives isowurtzitane in KBr

Substance (initial compound)	$-C=O/cm^{-1}$	-C-N-/cm ⁻¹	$-NO_2/cm^{-1}$	-NO ₂ / cm ⁻¹
TAIW	1658	1399	-	-
PAIW	1672	1404	-	-
GAIW	1669	1412	-	-
TADFIW	1669	1415	-	-
2,6,8,12-TA-4,10-DNIW (from the TAIW)	1674	1404	1566	1284, 1301
6,8,12-TA-2,4,10-TNIW (from the TAIW)	1687	1389	1577	1310, 1264
6,12-DA-2,4,8,10-TNIW (from the TAIW)	1695	1403	1590	1320, 1266
2-APNIW (from the TAIW)	1702	1388	1594	1316, 1266
DADFDNIW (from the TADFIW)	1697	1410	1557, 1580	1310
ADFTNIW (from the TADFIW)	1703	1409	1587, 1561	1304
4-FPNIW (from the TADFIW)	1723	1429	1590, 1557	1276, 1326
2,6,8,10,12-PA-4-NIW (from the GAIW)	1674	1393	1559	1303
TADNIW (from the GAIW)	1678	1402	1577, 1534	1311
TATNIW (from the GAIW)	1688, 1680	1397	1586	1323
DATNIW (from the GAIW)	1693	1382	1592	1322, 1284

3 Results and Discussion

For comparison the reactivity of the derivatives of hexaazaisowurtzitane we studied the nitration TAIW, PAIW, GAIW and TADFIW in sulfuric - nitric acid mixtures containing 23.3 and 34.3% wt. sulfuric acid [5]. Some results are shown in Fig. 1, the lowest rate of nitration demonstrated TADFIW is consistent with the published data^[2]. The highest rate of nitration showed is TAIW, the formation of HNIW of GAIW is 2-2,5 times slower. Unexpectedly PAIW demonstrated low nitration reaction rate, in nitrating mixture containing 23.3% sulfuric acid rate of formation HNIW similar to that observed for TADFIW, if they contain sulfuric acid of 34,3% is 1,5-2 times higher.

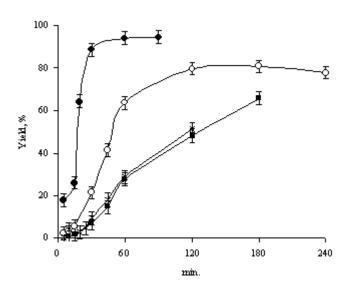


Fig.1 Dependence of the yield GNIW of time for nitration TAIW (•), PAIW (*), GAIW (○) and TADFIW (■) in the acid mixture containing 23.3% wt. H₂SO₄, 75 ° C

The analysis of the mixtures and purified compounds by HPLC, LC-MS and NMR spectroscopy showed by the presence of the single dinitro compound ($[M+CHO_2]^-=471$) was identified as 2,6,8,12-tetraacetyl-4,10-dinitro-2 ,4,6,8,10,12-hexaazaisowurtzitane (2,6,8,12-TA-4,10-DNIW). In addition to his mix contains a single isomer trinitro compound ($[M+CHO_2]^-=474$) - identified as 2,6,8-triacetyl-4,10,12-trinitro-2,4,6,8,10,12-hexaazaisowurtzitane (6,8,12-TA-2,4,10-TNIW), two isomers tetranitro compounds ($[M+CHO_2]^-=477$) - identified as the 2,10-diacetyl-4,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (90 %, 6,12-DA-2,4,8,10-TNIW) and 2,8-diacetyl-4,6,10,12- tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (10%, 8,12-DA-2,4,6,10-TNIW) and pentanitro compound ($[M+CHO_2]^-=480$) - 2-acetyl-4,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitane (2-APNIW). These results are consistent with data published in the paper [5]. In such a way the process of nitration TAIW can be presented by the following scheme (Fig.2):

In contrast of TAIW at the first stage of the nitration PAIW is observed the formation of 2,6,8,10,12-pentaacetyl-4-nitro-2,4,6,8,10,12-hexaazaisowurtzitane which can be isolated from the reaction mixture. When the reaction time 60 min at 30 °C it is the main product Next, the formation of two isomers TADNIV in the ratio the near to 2:1, the first of these corresponds to 2,6,8,12-tetraacetyl-4,10-dinitro-2,4,6,8,10,12-hexaazaisowurtzitane, second compound probably contains the nitro group in positions 2 and 8. Introduction of a third nitro group (60 min at 40° C) followed by the formation of three isomers in a ratio of 9:1:11. The first of these corresponds to 2,6,8-tracetyl-4,10,12-trinitro-2,4,6,8,10,12-hexaazaisowurtzitane. Continued of the nitration resulted to a mixture of two tetranitro compounds a ratio of 2 to 3, the first of which are corresponds to 2.10-diacetyl-4,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane. The second one probably corresponds of 10.12-diacetyl-2,4,6,8-tetranitro-2,4,6,8,10,12- hexaazaisowurtzitane Next stages the formation of two pentanitro compounds containing acetyl group at 2 and 4 positions. In such a way the process of nitration TAIW can be presented by the following scheme (Fig.3):

The nitration of GAIW is more complicated, in this case, is observed all the four possible isomers dinitro compounds, three major trinitro compounds, the two main isomers tetranitro compounds and two pentanitro compounds. The proposed scheme of nitration GTIV shown in the fig.4. Thus, nitrolysis of acyl groups located at 4 and 10 positions cage is slower than the 2, 6, 10 and 12.

Under nitration TADFIW is possible as a substitute for the acyl and formyl groups. It is known that the latter subjected nitrolysis much slower and the main impurities in GNIV obtained in this way is 2,6,8,10,12-pentanitro-4-formyl-2,4,6,8,10,12-hexaazaisowurtzitane [2]. We carried out a study of the composition of intermediate products of nitration TADFIW in the systems containing 67,5% HNO₃, 31% H₂SO₄, 1,5% H₂O and 0,3% NO₂ at 75° C and reaction time of 20 and 45 minutes. The resulting mixture analyzed by HPLC and LC-MS. It was shown that at the stage formation of mono and dinitro derivatives occurs substitution of acyl groups to the formation 6,8,12-triacetyl-4,10-diformyl-2-nitro-2,4,6,8,10,12-hexaazaisowurtzitane (TADFNIW,

 $[M+CHO_2]^-=440)$ and diacetyldiformyldinitrohexaazaisowurtzitane (DADFDNIW, $[M+CHO_2]^-=443)$. The introduction of the third nitro group gives a mixture of acetyldiformyltrinitrohexaazaisowurtzitane (ADFTNIW, $[M+CHO_2]^-=446)$ and diacetylformyltrinitrohexaazaisowurtzitane (DAFTNIW, $[M+CHO_2]^-=460$), contents of the last at 6-8 times less. Next the same process of substitution of an acyl or formyl groups and formed diformyltetranitrohexaazaisowurtzitane (DFTNIW, $[M+CHO_2]^-=449)$ and acetylformyltetraanitrohexaazaisowurtzitane (AFTNIW, $[M+CHO_2]^-=463)$ in a ratio of 2 to 1. Next they turn into formyltpentanitrohexaazaisowurtzitane (4-FPNIW, $[M+CHO_2]^-=466)$, acetyltpentanitrohexaazaisowurtzitane ($[M+CHO_2]^-=480$) is observed only in trace amounts.

Fig.2 Scheme of nitration TAIW

Fig.3 Scheme of nitration PAIW

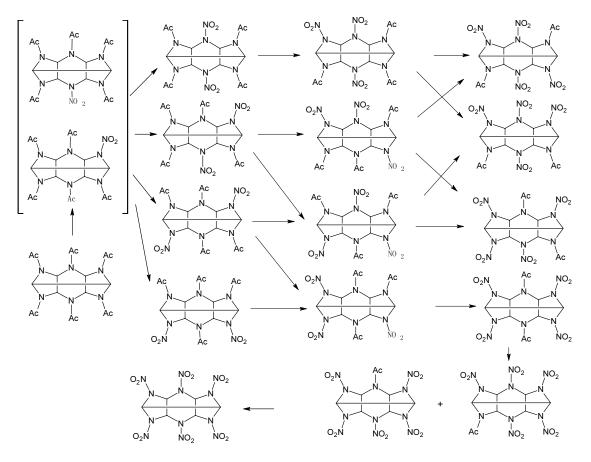


Fig.4 Scheme of nitration GAIW

4 Conclusion

The two free secondary amines of TAIW are nitrated firstly and then the four acetyl groups of TAIW are nitrolyzed one after. Under nitration GAIW and PAIW substitution of acyl groups located at 4 and 10 positions of the cage is slower than the 2, 6, 10 and 12. By nitration TADFIW the reaction path involves concurrent substitution formyl and acyl groups, formyl group replaced more slowly.

References

- [1] Nielsen A T. Caged polynitramine compound: US Patent 5693794. 1988.
- [2] Sysolyatin S V, Lobanova A A, Chernikova Yu T, Sakovich G V. Methods of synthesis and properties of hexanitrohexaazaisowurtzitane. Russ Chem Rev, 2005, 74(8): 757–764.
- [3] Kyoo-Hyun Chung, Hee-Sup Kil, In-young Choi, Chan-Kook Chu, Ik-Mo Lee. New Precursors for Hexanitrohexaazaisowurtzitane (HNIW, CL-20). J Heterocyclic Chem, 2000, 37: 1647-1649.
- [4] Surmachev V N, Sysoljatin A S, Dubkov A S, Izuchenie nitroliza geksaacetilgeksaazaizovjurcitana. Vserossijskaja konferencija «Himija nitrosoedinenij i rodstvennyh azot-kislorodnyh sistem». IOH RAN, 2009: S. 85.
- [5] Judin N V, Rudakova G F, Zbarskij V L, Kasmynina Ju S, Ponomareva N S. Isledovanie nitrovanija 2,6,8,12-tetraacetil-4,10-digidro-2,4,6,8,10,12-geksaazaizovjurcitana serno-azotnymi kislotnymi smesjami. Sb. nauchnyh trudov VNTK, Uspehi v special'noj himii i himicheskoj tehnologii, RHTU, M.,2010:147-151.
- [6] Sun Chenghui, Fang Tao, Yang Zongyun, Bai Junhong. Reaction mechanism of preparation CL-20 from tetraacetylhexaazaisowurtzitane. Energetic Materials, 2009, 17(2):161-165.

Preparation Nano Sized HMX by Using Ultrasonic Waves

BAYAT Yadollah¹, MOUSAVI Seyed Hamed^{1,2*}, BAYAT Fatemeh², RASTEGAR Nasab Gholamhossein² & GHOLAMHOSSEINI Tahereh²

(1 Faculty of Chemistry and Engineering Chemistry, Malek Ashtar University of Technology, Tehran 16765-3454, Iran 2 Zakaria Razi Student Research Center, Rey City 18735-677, Tehran, Iran)

Abstract: The researches done on particle size of explosive materials show that with reducing of particle size of explosive materials, reduced impact, friction and shock waves sensitivity, also by using of ultrafine explosive materials in propellant in comparison to larger particle size improved density, stability, calory and mechanical properties. Meanwhile the reduction of particle size of explosive materials influence on combustion mechanism of propellant and reduced burning rate and exponent pressure of different methods used for reduction of particle size, for example, milling, crystallization and etc. In this article for preparation of ultrafine HMX the method of solvent-anti solvent has been used by assistance of ultrasonic device. In optimum state the average size of particle is 106 nm and size distribution is narrow.

Keywords: sedimentary crystallization; ultrasonic; reduce particle size; HMX

1 Introduction

By the development of explosive materials with improvement performance and the reduction of sensitivity to mechanical stimuli such as impact and friction is one of the important researches goals in energetic fields. With reducing particle size of explosive materials decrease crystal defects and inclusion. This will reduce the sensitivity of explosive materials. Therefore safety of materials increases during handelling, processing, warehousing, and transportation. There searches done on the role of superfine particles of explosive materials in propellant show that with reducing of particles size increase density, calory, stability, and mechanical properties. Also one of the most important affecting issues on burning rate of propellant is the particles size of explosive materials. By using these ultrafine explosive materials in the propellant, the burning rate and exponent pressure decrease [1]. Various methods used for the reduction of the particles size of materials that the selection methods depend materials and expected properties such as the particles size distribution. Two general methods used for the reduction of the particles size up to down method including mechanical methods (grinding) and down to up method, including crystallization method (sediment crystallization fusion, supercritical fluid, and etc). In the reduction of particles size in mechanical technique reduction of particles size in mechanical technique, solids construction elements have been broken by mechanical forces and increasing the mass distribution happens. To reduce the particles size with mechanical method used various equipment such as pinned disk mill, jet mill, colloid mill, ball mill, etc. Mentioned methods have disadvantages such as static, electricity, pressure, and trituration that with considering the disadvantages, these methods are powerless and insecure to produce these ultrafine explosive materials [2-6]. Crystallization is the conversion of one or more material from liquid or gas state to crystalline state. This method used for modifying the physical properties of substance. In addition, the crystallization is a process for thickening pure material from solution, melt or gas phase one of the suitable methods for producing these ultrafine crystal of explosive materials is sedimentary crystallization method (solvent-anti solvent). Because in method nucleation is high and high degree of saturation is seen. Although crystallization methods for preparing explosive materials have significant and advantages and crystals can grow slowly away from stress and obtain an ideal crystal. These methods have disadvantages such as [6-9]:

- A: Sample should be soluble in one or more solvent solution and precipitate with reduction of temperature or increasing of antisolvent.
 - B: Contaminate crystals to solvent and other solvate.
 - C: They spend too much energy.
 - D: Having lower yield (Because occurs in several stages)

A new method to produce ultrafine explosive is the kinetic spray crystallization that submicron size HMX and RDX are prepared with this method. The obtained particles size distribution with this method is very narrow. This schematic has been shown in Fig.1 ^[10] Solvent/anti-solvent for spray solution by air into anti-solvent is used to produce ultrafine HMX The average of the obtained particles size with this method is 245 nm ^[1]. Also Mr. Lee and et al. by using sedimentary crystallization method have achieved HMX with an average particle size of 300 nm ^[11].

In this research solvent/anti-solvent method has been used for producing ultrafine HMX by the assistance of ultrasonic device. In this method for controlling the crystallization process, the ultrasonic energy is used. To create ultrasonic waves, piezoelectric converters are used. These converters converted electrical energy into mechanical vibration with the same frequency. Mechanism to reduce the particles size of solid and emulsions by ultrasonic waves is cavitation. Cavitation is used as the center of nucleation of new crystals and growing. Also producing bubbles and bursting them caused trituration and grinding of solid particles [12].

2 Safety

Generally by development of nanotechnology and producing nano particles in different scientific fields duet to the specific nature of nano particles produced and creating risk for human health, Considering the work, safety during producing, transportation, warehousing, and applying of nano particles should be considered. Therefore at the same time by growing the technology in producing nano particles, safety problems and diseases have been considered. In Considering the risks of toxicity of nano material in three contact areas in human body with the environment can be mentioned: skin, respiratory system, lungs, digestive system (mouth-

esophagus). These three elements are the enteries for the nano particles in human body and from the way it can be entered in blood stream and internal systems and nervous. Of course it should be mentioned that the safety hints for producing nano explosive materials are not available. There fore, the respiratory mask, gloves, and suitable ventilation system can be away to control damages^[13].

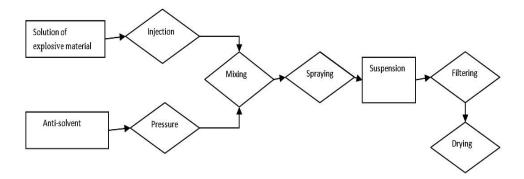


Fig.1 Principle of kinetic spray crystallizing method [10]

3 Experiment

3.1 Equipment

Ultrasonic device used H80 model is made in Elma Company of Germany. To determine the morphology and particle size of electronic Microscope XL30 manufactured in Philips Company of Dutch has been used. Installed equipment for doing the experiment is shown in Fig.2.

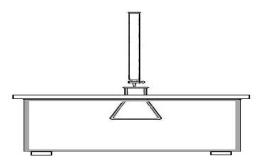


Fig.2 Installed Equipment

3.2 Procedure

In this method certain concentrations of HMX in acetone solvent prepared at room temperature (table1) and then by using of a burette of 0.5 cc are injected into an erlenmeyer flask containing anti–solvent (water) that its temperature is zero degrees Celsius. Solvent injection rate is about 0.7 ml per minute. Ultrasonic frequency is 80 Hz and its power is 750 Watt.

Table 1 Characteristic of produced samples

Sample name	Amount of HMX/gr.	Solvent (acetone)/ml	Anti-solvent(water)/ml	Anti-solvent Temperature (centigrade degree)
Sample-1	0.1	5	80	0
Sample-2	0.1	10	80	0
Sample-3	0.1	20	80	0

4 Results and Discussion

SEM image and the particles size distribution graph of sample respectively have been shown in Fig 3 and 4. Also SEM image and the particles size distribution graph of sample-2 in Fig 5, 6 and sample-3 in Fig 7, 8 have been shown respectively.

According to the images and the particles size distribution graph, it is observed with reduction of concentration samples can be achieved to smaller particle size. The best particle size is related to sample -3 that have the lowest concentration among the prepared solutions. The obtained average particles size is 106 nm. The reason for the reduction of the particles size with reduction of concentration is expressed with the degree of relative supersaturated theories. In other words, with reduction of samples