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内 容 简 介

　　本书系统介绍了图论的基本知识，如树、连通性、遍历问题、匹配、顶点

着色、边着色、平面图和网络等。作为正文的补充，书中收集了大量经典的习

题，并在书后附有提示及解答，以便自学。与一般图论书不同的是，本书指明

了许多应用中常见的图论问题是 ＮＰ困难问题，便于读者在科研工作中及

时注意这种问题。 本书力求立论严谨、简明易懂，只要是有一定数学基础的

高中毕业生都可看懂。 本书特别强调推理（而且还是在离散对象上的推理）
的重要性，因为这是培养独立科研能力的必由之路。

本书可作为大学信息类及计算机类硕士研究生及高年级本科生的图论

教材或参考书，也可作为其他相关专业科技工作者及图论爱好者的学习参

考书。
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前　　言

本书是作者在给北京邮电大学研究生和本科生讲授了二十多年“图论及其应

用”课程的基础上，将教学资料及体会整理编写而成的。通过这些年的教学，除了因

许多图论算法已包含在数据结构等教科书中，以及教学时间不足等原因外，笔者越

来越感到应该把侧重点放在训练学生掌握图论基本证明方法上。 如果一个学生学

完这门课后，仍然不能·自·己·判·定自己做的作业是对或错，那么可以说他没有学好这

门课。 掌握了基本证明方法也就有了这方面的自学能力，这将使学生在科研工作

中，面对图论（网络）的新旧结论以及专业知识纵横交错的复杂对象，会感到更自

主、更自在。 为此，在定理证明中，笔者往往不满足于一个证明，但凡有来自名家的

经典证明，书中一般都会收录其中。因此，第一个证明总是“正统的”，其他证明只好

请读者“自取”。书中的附录及打号的章节也属“自取”部分。甩掉这些内容后，６０
学时的教学并不轻松，其根源是掌握基本证明方法要有不少揣摩和适应的功夫。

此外，笔者对许多 ＮＰ完全或 ＮＰ困难的图论问题，在相关的章节中都及时加

以指出，以便在设计算法时明确方向，这是本书的另一重要特色。
习题是学好图论的必由之路，不但要多做，而且要做好。 凡是序号用黑体字标

出的习题，都应尽量做。 本书除了有题解外，对打号的习题还有提示。 题解主要

是为自学的读者提供参考。 大多数习题都是较容易的，有些只是对正文的一个补

充，因此一般读者应尽量不要看题解，自己做往往比看题解更省时省力， 何况看题

解的效果并不好。 此外，笔者还把一部分内容转移到了习题中。
虽然笔者尽量完善本书，但由于时间仓促，疏漏之处仍在所难免，敬请读者不

吝施教，不胜感谢。
本书的出版得到了北京邮电大学以郭军教授为首的信息工程学院院领导的大

力支持，以及胡正名、阮传概、陆传赉诸教授和罗群、王维嘉、卓新建等同事的关心

和帮助，特此一并表示感谢。 科学出版社匡敏女士为本书的出版做了不少工作，在
此一并致谢。

孙惠泉

２００４年 ６ 月 １８ 日于北京

　· ｉ· 　
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第 １ 章　图的基本概念

１１　图 的 概 念

　　图论是一门应用数学，它的概念和结果来源非常广泛，既有来自生产实践的问

题，也有来自理论研究的问题。 历史上参与研究图论问题的人，既有许多天才的数

学家，也有不少业余爱好者。 我们先来看几个著名的例子：
Ｋ ｏ̈ｎｉｇｓｂｅｒｇ 七桥问题

在贯穿古普鲁士 Ｋ ｏ̈ ｎｉｇ ｓｂｅｒｇ 城（第二次世界大战时划归原苏联，改名 Ｋａｌｉｎ
ｉｎｇ ｒａｄ，今属白俄罗斯）的 Ｐｒｅｇｅｌ 河上有七座桥连接两岸及河中的两个小岛（如图

１１１所示，第二次世界大战时已几乎夷为平地）。 当时困扰当地居民的一个问题

是：是否存在一种走法，走过每座桥恰好一次。 虽然当时多数人相信不存在这种走

法，但没有人能解释其原因。 问题被提到当时在 ＳｔＰｅｉｔｅｒｓｂｕｒｇ 的数学教授Ｅｕｌｅｒ
（１７０７～１７８２）面前，他把每块地用一个顶点代替，把每座桥用连接对应顶点的一条

边代替，把问题抽象为图 １１２中的图。 为解决这个具体问题，他提出了判定一般

图存在这种走法的充要条件，并给出了必要性的证明。这结果发表于 １７３６年，并被

公认为第一篇图论文章，他本人也被尊崇为图论和拓扑学之父。

图 １１２图 １１１
电网络

为了解出电网络中每个分支电流所满足的线性联立方程组，Ｋ ｉｒｃｈｈｏ ｆｆ 于

１８４７ 年发展了树的理论。 作为物理学家，Ｋｉｒｃｈｈｏ ｆｆ 却有着数学家的思维方式，他
把具有电阻、电容、电感等的电网络，只用对应的顶点和边来代替，每边并不附带其

·１·



对应元件类型的任何表示，即他把电网络 N 用其潜含的（基础）图 G 代替。 由此他

指出，为了求解该方程组，只要解其中对应于基本圈的那些方程即可。 这里基本圈

是指由 G 的任一生成树 T 所确定的那些圈（即每条不属于 T 的边在 T 上所确定

的圈）。例如图 １１３ 的网络共有 ３个基本圈。Ｋｉｒｃｈｈｏｆ ｆ 的方法已成为电网络机助

分析和设计的基础。

图 １１３
四色猜想

这个由伦敦的一名中学生在一百多年前提出的猜想是说，每个地图至多用 ４
种色就可以“正常”着色了（即，可以使每两个有公共边界的国家都涂上不同的颜

色）。 我们把地图看成是由平面上的顶点和边所组成，每个国家对应于其中的一个

平面区域，这样，每张地图就对应于一个平面图（即，可画在平面上使任两边都不在

非顶点处相交叉的图），而每个国家对应于平面图中的一个面。 在图论中四色猜想

是说：每个平面图的面至多用 ４种色就可以“正常”着色了。例如图 １１４ 左图中共

有 ７个面：A ，B ，C ，D ，E ，F ，H 。这个平面图需要用 ４ 种色，色 １，２，３ 及 ４，才能有正

常面着色。

图 １１４
如果我们用一个顶点代表一个国家，并把每两个有公共边界的国家用一条边

连接起来，则得到一个平面图 G ，如图 １１４ 中的右图所示。 可以证明（第 ７章）四
色猜想就等价于：任何平面图 G 的顶点至多用 ４种色就可以“正常”着色了（即，使
每条边两端的（不同）顶点不同色）。 例如图 １１４中的地图对应的平面图 G 中，其
顶点着色用数字 １，２，３，４ 表示。

·２·



这个困扰了无数天才数学家和众多业余爱好者达一个多世纪的猜想，终于在

１９７６年由 Ａｐｐｅｌ和 Ｈａｋｅｎ 用大型计算机证实了。 当时需要用手工输入 １４００ 个图

形到计算机里，再用巨型程序去计算。 该证明至今未能得到彻底的检验。 近来

Ｒｏｂｅｒｔ ｓｏｎ，Ｓ ａｎｄｅｒｓ，Ｓｅｙｍｏｕｒ 和 Ｔ ｈｏｍａｓ 提出了一个改进，“只要”６３３个图形就够

了，且简化了证明方法。 但是，无论如何，由于至今未能得到理论上的证明，人们仍

然无法一窥四色猜想得以成立的内在机制，使证明该猜想的努力难于停息。
上面三个例子每个都引出了一个图（形），它们在相当程度上代表了我们所研

究问题的实质。 例如在七桥问题中我们用图 １１２代替图 １１１，已经有了很高的

抽象性，甩掉了许多与问题实质无关的水分，但顶点的位置、边的形状仍然与问题

实质无关，因此在图论中把七桥问题对应的图 G 定义为

G ＝ （V （G ），E （G ））
其中

V （G ） ＝ ｛A ，B ，C ，D ｝
E （G ） ＝ ｛A C ，A C ，A B ，A B ，A D ，B D ，C D ｝

这样给出的图 G ，既没有顶点的位置，也没有边的形状，仅包含了顶点之间的连接

关系，即我们所考虑的问题的实质性结构。
在图论中，一个图（ｇ ｒａｐｈ）G 定义为由有限·非·空顶点集合（ｖｅｒｔ ｅｘ ｓｅｔ ）V （G ），及

有限边集合（ｅｄｇｅ ｓｅｔ ）E （G ）组成的，记为

G ＝ （V （G ），E （G ）） （）
其中 E （G ）的每个元素是 V （G ）中顶点的无序对，称为 G 的边（ｅｄｇｅ）。图的定义中，
并不要求每个无序对的两个元素不同；也不要求任二无序对彼此不同。 例如

V （G ） ＝ ｛A ，B ，C ，D ｝ （）
E （G ） ＝ ｛a，b，c，d，e，f ，g，h ｝ （）

其中

a＝C B ，b＝C D ，c＝A D ，d＝C A ，e＝C A ，f＝C A ，g＝D D ，h＝D D

图 １１５

图 G 显然可用图 １１５ 给出的图形来表示。 我们称图

１１５ 中的图形为图 G 的几何实现（ｇ ｅｏｍｅｔ ｒｉｃ ｒｅａｌｉｚａ
ｔ ｉｏｎ，代表 ｒｅｐｒｅｓｅｎｔａｔｉｏｎ）。

显然边数大于等于 １ 的图都有无穷多个几何实现。
但是用图形给出一个图，往往比用数学式子更简洁明了，
因此今后我们将对图和图的几何实现经常不加区别。

我们把由顶点 u 和 v 的无序对组成的边 e，记为 e＝
uv 或 vu。 并称 u 和 v 为 e 的端点（ｅｎｄ）；称边 e 连接（ｊｏ ｉｎ）u 和 v。 我们也称边 e 和

顶点 u（及 v）相关联（ｉｎｃｉｄｅｎｔ ）；顶点 u（及 v）和边 e 相关联。 我们还称 u 与 v 相邻

（ａｄｊａｃｅｎｔ ）。 类似地，如果两条不同的边有公共顶点，则也称它们相邻。 例如，图
１１５中边 d，e，f，b 及 a 都彼此相邻。 总之，关联是顶点和边之间的关系；相邻是
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顶点和顶点，或边和边之间的关系。
如果两条边有相同的两端点，则称它们为重边（ｍｕｌｔｉｐｌｅ ｅｄｇｅ）或平行边（ｐａｒ

ａｌｌｅｌ ｅｄｇｅ）。 如果一条边的两端点相同，就称它为环（ｌｏｏｐ）；否则称为棱（ｌｉｎｋ）。 例

如图 １１５中 d，e 及 f 是（ ３重）平行边；g＝D D 为环。除 g 与 h 外，该图其他边都

是棱。
称不包含环和重边的图为简单图（ｓｉｍｐｌｅ ｇ ｒａｐｈ）。 例如图 １１３的图 G 和 T ，

及图 １１４ 中的两个图都是简单图。
仅有一个顶点的图称为平凡图（ｔ ｒ ｉｖｉａｌ ｇ ｒａｐｈ）。注意，它可能拥有多条环。称不

包含边（即 E＝Φ）的图为空图（ｅｍｐｔ ｙ ｇ ｒａｐｈ），即它只有一些孤立顶点（ｉｓｏ ｌａｔ ｅｄ），
如图 １１６ 所示。

图 １１６

例 １１　 若一群人中，凡相识的两人都无公共朋

友，凡不相识的两人都恰有两个公共朋友，则每人的

朋友数相等。 （注：相识者为朋友。）
证明　作一图 G ：以该群人为其顶点集，两个顶

点相邻当且仅当对应的两个人相识。
先考虑任二相邻顶点 u 与 v ：令 A 与 B 是 G 中分别和 u 与 v 相邻的所有顶点

的集合。 由假设条件知 A 与 B 不相交。 从而 A 中任一顶点 a 都与 v 不相邻。 于是

a 与 v 应恰有 ２公共朋友。 但，显然，a 与 v 已有一个公共朋友 u。 设 a 与 v 的另一

个公共朋友为 b，则 b 首先必须是与 v 相邻的，因此我们有

a 与 b（∈B ）相邻；且 a 不能与 B 中其他顶点相邻

故 A 中任一顶点 a 恰只与 B 中一个顶点 b 相邻，反之亦然。 从而集合 A 与 B 之间

存在一一对应关系。 故│A│＝│B│，由此得，任二相识的人 u 与 v 的朋友数相等（图
１１７）。

图 １１７

今假设存在两人 x 与 y，他们的朋友数不等，
则由上述知在 G 中他们不相邻。 从而由假设条件

知，他们有一公共朋友，设为 w 。 但由上述，这又导

致 x，y，w 三人有相同的朋友数，矛盾。 ／／
当我们作上述例子时，我们还没有一个图论定

理，连图论的术语也知之甚少，但该证明却是图论

证明的一个缩影：其中几乎看不到一个数学式子，
但它的确是·一·步·步·的·推·理，且所涉及的结论必须是（在满足给定条件的）普遍意义

下成立的，而不是仅仅在个别图上成立，甚或是“感觉”它是“大概齐”成立。 但为了

使证明显得很简练，我们又往往只将一些比较明显的结论直接摆出来。为此使不少

初学者感到很迷惘，觉得证明过程似乎有理，又似乎是一些“感觉”和“大概齐”的堆

积。他们往往不能判定自己写出来的证明是否是正确的。只有通过做大量的习题，
才能逐渐掌握和适应图论证明中的方式方法，并慢慢步入正轨。它的最重要标志就

·４·



是上述迷惘的消散！此外，在进行证明的过程中，使用所考虑的图的一般模型（例如

图 １１７），常常对问题的分析很有帮助。 但绝不可过于依赖。 特别是在写出证明

时，应尽量不要看它，以免由于疏忽，使所选模型只代表了一个特殊情形。 （虽然这

种错误连一些名家偶尔也难以避免。）
在图的几何实现中，有些边可能不得不在非顶点处相交叉（例如图 １２５ 中图

K ３ ， ３的任何一个几何实现都必然出现这种情形，称为非平面图）。 为了将顶点和这

种交叉点区别开来，我们约定用·小·圆·点来表示顶点。
对图和图的几何实现不加区别虽然给我们带来不少方便，但也带来了不少负

面影响。不少读者今后常常会误把图的几何实现当成就是图本身，导致身陷迷雾而

不自知。 例如，可能会产生这样的疑问：“图中顶点（的位置）怎么可以随便移动

呢！？”
为方便起见，我们约定用记号

ν（G ）
ε（G ）

分别表示图 G 的顶点数及边数。 今后我们常用 G 表示一个图，且当讨论中只涉及

一个图时，可将 V （G ），E （G ），ε（G ）及 ν（G ）常常简记为 V ，E ，ε及 ν。 对今后出现的

图的其他参数，也照此办理。

习　　题

１１１　若 G 为简单图，则 ε≤ ν
２ 。

１２　同　　构

称图 G 恒等（ｉｄｅｎｔ ｉｃａｌ）于图 H ，记为 G＝H ，当且仅当 V （G ）＝V （H ），E （G ）＝
E （H ）。因此可以用形状相同的几何实现表示。例如图 １２１中的图 G 和 H 恒等。
反之如果两个图可以用形状相同的两个几何实现来表示，它们并不一定是恒等的。
例如图 １２１中，图 G 和 F 并不恒等，但它们却·可·以·有相同形状的几何实现。具有

这种性质的两个·图，易见，只要把其中一个图的顶点和边的标号适当改名，就可得

到与另一个恒等的图。 我们称具有这种性质的两个图同构（ｉｓｏｍｏ ｒｐｈｉｃ），其正式定

义为：称图 G 同构于图 F ，记为 GF ，当且仅当在 V （G ）与 V （F ），以及 E （G ）与
E （F ） 之间，各存在一一映射

Ψ：V （G ） → V （F ）
以及

Φ：E （G ） → E （F ）
·５·



且 这两个映射·保·持·关·联·关·系，即它们满足关系：Φ（e）＝Ψ（u）Ψ（v），e＝uv∈
E （G ），如图 １２２所示。

图 １２２图 １２１
　　例如图 １２３ 中的两个图是不同构的。 假设不然，则顶点 a 与 u，及 f 与 z，应
该是对应顶点（两个图中与它们相关联的边数为最多和最少）。 这又导致 c 与 v 相

对应。 但在 G 中 a 与 c 不相邻；而在 H 中 u 与 v 却相邻，矛盾。

图 １２３
同构的图显然有相同的结构，它们之间仅仅在顶点和边的名字上有所不同而

已。 由于我们主要关心的是图的结构性质，因此当我们画一个图时，有时会省略其

标号。一个无标号图，可看成图的同构等价类的一个代表。 我们给出顶点和边的标

号主要是为了便于称呼它们。
判定两个图是否同构，有很重要的实用价值。例如我们制作的电路板应该和设

计的电路图同构。由于电路板的规模迅速增长，极需用计算机来判定其同构性。 然

而判定两个图是否同构，至今仍然是个尚待解决的困难问题（ｏｐｅｎ ｐｒｏｂｌｅｍ），即不

知其是否有好算法，抑或为 ＮＰｈａｒｄ 问题。
称一个简单图 G 为完全图（ｃｏｍｐｌｅｔｅ ｇｒａｐｈ），如果 G 的任二顶点都相邻。我们

把 n 个顶点的完全图记为 K n。
称 V′ V （G ）为图 G 中的独立集（ｉｎｄｅｐｅｎｄｅｎｔ ｓｅｔ），如果 V′中任二顶点都互

不相邻。 注意到这个定义中的“任二”顶点并未要求该二顶点是不同的。 例如图

１１５中，｛A ，B ｝，｛A ｝，｛B ｝都是独立集；但｛B ，D ｝，｛D ｝却都不是！
称图 G 为偶图（二部图，ｂｉｐａｒｔ ｉｔｅ ｇ ｒａｐｈ 或 ｂｉｇ ｒａｐｈ），如果存在 V （G ） 的一个

２ 划分（X ，Y ） （ｂｉｐａｒｔｉｔｉｏｎ，即 V （G ）＝X ∪Y ，且 X ∩Y＝），使 X 与 Y 都是独立

·６·



图 １２４
集。我们记偶图为 G＝（X ，Y ，E ）。特别地，称（X ，Y ）为偶图 G 的 ２－划分。如果偶图

G＝（X ，Y ，E ）中，X 和 Y 之间的每对顶点都相邻，则称 G 为完全偶图。 记│X │＝m ，

图 １２６

│Y│＝n 的完全偶图为 K m ， n，例如图 １２５第②，③图。

图 １２５
类似地可定义，完全三部图（记为 K m ， n ， p ，例如图 １２５ 第④图），完全 n －部图等。
例 １２　用标号法判定一个图为偶图。用红蓝两种颜色进行顶点标号如下：任

取一未标号顶点 v 标以红色。 再将 v 的所有相邻顶点都标以蓝色。 这时称 v 为已

扫描顶点。 若尚存在一已标号未扫描顶点 u，将它的所有相邻顶点，（若不出现矛

盾）都标以与其相异的颜色，并称 u 为已扫描顶点；否则任取一未标号顶点并重复

上述过程，如此反复进行下去，直到或者所有顶点都已标号，从而该图为一偶图；或
者在标号过程中出现矛盾（即出现两个同色顶点相邻），该图为非偶图。这个算法的

时间复杂性显然为 O （ν２ ）。

习　　题

１２１　若 GH ，则 ν（G ）＝ν（H ），ε（G ）＝ε（H ）。 证明其逆命题不成立。
１２２　证明图 １２６中的前 ４个图都同构：它们都与第 ５ 图不同构。

·７·



１２３　证明图 １２７中的第 １，２，３图同构； 而第 １，４ 图不同构：

图 １２７
１２４　证明两个简单图 G 和 H 同构当且仅当存在一一映射 f：V （G ）→

V （H ），使得 uv∈E （G ）f（u）f（v）∈E （H ）。
１２５　证明：（１） ε（K m ， n）＝m n。
（２） 对简单偶图有 ε≤ν２／４。
１２６ 　记 T m ， n 为这样的一个完全 m 部图：其顶点数为 n，每个部分的顶点

数为［n／m ］或｛n／m ｝个。 证明：
（１） ε（T m ， n）＝ n－k

２ ＋（m －１） k＋１
２ ，　　其中 k＝［n／m ］。

（２） 对任意的 n 顶点完全 m 部图 G ，一定有 ε（G ）≤ε（T m ， n），且仅当 GT m ， n 时

等式才成立。
１２７　所谓 k方体是这样的图：其顶点是 ０ 与 １组成的有序 k元组，其二顶

点相邻当且仅当它们恰有一个坐标不同。证明 k方体有 ２k 个顶点，k２k － １条边，且
是一偶图。

１２８　·简·单·图 G 的补图（ｃｏｍｐｌｅｍｅｎｔ ）G c，是指和 G 有相同顶点集 V 的一个

简单图，在 G
c
中两个顶点相邻当且仅当它们在 G 中不相邻。

（１） 画出 K
c
n 和 K

c
m ， n。

（２） 如果 GG
c 则称简单图 G 为自补的（ｓｅｌｆ ｃｏｍｐｌｅｍｅｎｔａｒｙ）。 证明：

① 若 G 是自补的，则 ν＝０，１（ｍｏｄ４）。
② 求出顶点数为 ４ 及 ５ 的所有自补图。
１２９　设图 G 和 H 中：V （G ）＝｛u １ ，u ２ ，…，un｝，V （H ）＝｛v１ ，v２ ，…，vm ｝，且

vivj ∈ E （H ）dG （ui） ＋ d G （uj） ＝ 奇数

则 H 一定是个完全偶图。
１２１０　若 ν≥２的简单图 G＝（V ，E ）中如下性质成立：

uv，vw∈／Euw∈／E ，　u，v，w ∈ V

则 G 一定是个完全 m 部图（某个正整数 m ）。

·８·



１３　图的矩阵和顶点的度

在图论里，与一个图 G＝（V ，E ），其中 V＝｛v１ ，v２ ，…，v ν｝，相对应矩阵中，我们

所关心的矩阵主要有关联矩阵 M （G ）＝［m i， j］ν ε及邻接矩阵 A （G ）＝［ai， j］ν ν，其中

m i， j ＝顶点 vi 与边 ej 的关联次数 ＝ ０，１，２
ai， j ＝连接顶点 vi 与 vj 的边数

例如与图 １３１ 中的图 G＝（V ，E ）相对应的关联矩阵与邻接矩阵分别为

e１ e２ e３ e４ e５ e６ e７

M （G ） ＝
１ １ ０ ０ １ ０ １
１ １ １ ０ ０ ０ ０
０ ０ １ １ ０ ０ １
０ ０ ０ １ １ ２ ０

v１

v２

v３

v４

v１ v ２ v ３ v４

A （G ） ＝
０ ２ １ １
２ ０ １ ０
１ １ ０ １
１ ０ １ １

v １

v ２

v ３

v ４

图 １３１

注意到 M （G ）中每列的和恒为 ２；A （G ）是对称矩

阵，它的对角线元素 ai， i是 G 中与顶点 vi 相关联的

环的数目。
由定义易见 M （G ）与 A （G ）都包含了图 G 的

全部信息，反之由 M （G ）或 A （G ）也可以完全确定

图 G 。正因为此，在计算机中往往用 M （G ）或 A （G ）
的形式来存储图 G 。一般来讲，用 A （G ）比用 M （G ）
更省存储空间。 在数据结构中还有很多更复杂的

存储结构，以便于对图进行运算。
图 G 中顶点 v 的度（ｄｅｇ ｒｅｅ），记为 d G （v） （当不引起混淆时，简记为 d（v）），是

G 中与顶点 v 相关联的边的数目，其中每一环记为 ２。 例如，图 １３１ 的图 H 中

d（v１ ）＝d（v４ ）＝４。
易见，关联矩阵 M （G ）中，每行之和就是与该行相对应的顶点的度；当 G 为无

环图时，邻接矩阵 A （G ）中，每行之和也是与该行相对应的顶点的度。
我们把 G 中的最大度记为 Δ（G ）（简记为 Δ）；最小度记为 δ（G ） （简记为 δ）。
度为奇数的顶点称为奇点，度为偶数的顶点称为偶点。度为 ０ 的顶点称为孤立

点 （ｉｓｏｌａｔ ｅｄ ｖｅｒｔ ｅｘ ）。 度为 １ 的顶点称为悬挂点（ｅｎｄ ｖｅｒｔｅｘ ），其关联边称为悬

·９·



挂边。
下面的握手定理说明，在一个集会中总握手次数的两倍，可以通过统计每人握

手次数之总和来求出。
定理 １３１（ｈａｎｄ ｓｈａｋｉｎｇ ｌｅｍｍａ） 　任一图中， ∑

v ∈ V

d（v） ＝ ２ε。
证明　注意到每条边在左式中的贡献恰为 ２ 即可。
推论 １３２　任一图 G 中，奇点的个数为偶数。
证明　令 X 与 Y 分别为 G 中的奇点集与偶点集，则

∑
v ∈ X

d（v） ＋∑
v∈ Y

d（v） ＝ ∑
v∈ V

d（v） ＝ ２ε＝ 偶数，
因此∑

v∈ X

d（v） ＝ ２ε－ ∑
v ∈ Y

d（v） ＝ 偶数 ，从而│X │为偶数。 ／／
例 １３　任一多面体中，边数为奇数的（外表）面的数目为偶数。

图 １３２

证明　作一图 G ，其顶点对应于多面体的面，
且二顶点用一边连接，当且仅当对应的两个面有一

公共边。于是边数为奇数的面对应于 G 的奇点。再
由推论 １３１即得。 ／／

（例如图 １３２中的 ３棱柱，共有 ２个边数为

３ 的面，及 ３个边数为 ４的面。 它对应的图 G 如右

图所示。）

图 １３３
如果一个图中每个顶点 v 的度都是常数 k，则称 G 为 k－正则图 （ｋｒｅｇｕｌａｒ

ｇ ｒａｐｈ）。 例如 k方体为 k正则图。 称一个图为正则图，如果对某个 k 它是 k正则

的。例如完全图 K n 及完全偶图 K n ， n 为正则图。图 １３３ 中展示了几种正则图的例

子。

习　　题

１３１　证明：适当排列偶图 G 的顶点，可使 A （G ）的形式为
０ B

B
Ｔ ０ 。

１３２　证明：δ≤２ε／ν≤Δ（即一个图中度的平均值介于 δ 与Δ之间）。
１３３　若 k正则偶图（k＞０）的 ２划分为（X ，Y ），证明│X │＝│Y│。
·０１·



１３４　设 V （G ）＝｛v１ ，v２ ，…，vν｝，则称 （d （v １ ），d（v２ ），…，d（vν） ） 为 G 的度

序列。 证明：非负整数序列 （d １ ，d ２ ，…，d n） 为某一图的度序列∑n

i＝ １
d i 是偶数。

１３５　证明：任一无环图 G 都包含一偶生成子图 H ，使得 dH （v）≥dG （v）／２
对所有 v∈V 成立。

１３６ 　设平面上有 n 个点，其中任二点间的距离大于或等于 １，证明：最多

有 ３n 对点的距离等于 １。
１３７　证明：在人数大于 １ 的人群中，总有二人在该人群中有相同的朋友数。
１３８　图 G 的边图（ｅｄｇｅ ｇ ｒａｐｈ），记为 L （G ），是个以 E （G ）为顶点集的图，且

L （G ）中两顶点相邻，当且仅当它们是 G 中两条相邻的边。 证明：
（１） L （G ）的顶点数为 ε（G ）；边数为∑

v∈ V

d G （v）
２ 。

（２） K ３ 与 K １ ， ３有相同的边图。 （事实上有：（Ｗｈｉｔｎｅｙ） 设 G １ 与 G ２ 为二非平凡

简单图，则 L （G １ ）L （G ２ ） G １G ２ 或 G １ 与 G ２ 分别为 K ３ 与 K １ ， ３ 。）
（３） L （K ５ ）的补图同构于 Ｐ ｅｔ ｅｒｓｏｎ 图。 （参见习题 １２３中图 １２７ 左边第一

图。）
１３９　称序列 d＝（d １ ，d ２ ，…，d n）为图序列（ｇ ｒａｐｈｉｃ ｓｅｑｕｅｎｃｅ），当且仅当存

在一个简单图以 d 为其度序列。 例如，（６，５，４，３，３，２，２）是图序列；而（７，６，５，４，３，
３，２）及（６，６，５，４，３，３，１）都不是图序列。以下设 d＝（d １ ，d ２ ，…，d n）为非负整数的非

增序列，记序列 d′＝（d ２－１，d ３－１，…，dd １＋ １－１，d d １ ＋ ２ ，…，d n），
（１） 证明：d 为图序列∑n

i＝ １
d i 为偶数，且

∑k

i＝ １
d i ≤ k（k－ １） ＋ ∑n

i＝ k＋ １
ｍｉｎ（k，di）　　k∶１ ≤ k ≤ n

（Ｅｒｄｏｓ 和 Ｇａｌｌａｉ，１９６０，证明上述必要条件也是充分条件。）
（２）证明：d 为图序列d′为图序列。
（３） 当已知 d＝（d １ ，d ２ ，…，d n）为图序列时，利用（２）叙述一个算法来构造以 d

为度序列的一个简单图。

１４　子　　图

子图，特别是导出子图及边导出子图，是图论中经常用到的概念。 我们称图 H

为图 G 的子图（ｓｕｂｇ ｒａｐｈ），记为 H G ，如果 V （H ）V （G ） ，E （H ） E （G ）。 反

之，称 G 为 H 的母图（ｓｕｐｅｒｇ ｒａｐｈ）。如果 H 是 G 的子图，但 H ≠G 就称 H 为 G 的

真子图（ｐｒｏｐｅｒ ｓｕｂｇ ｒａｐｈ），记为 H G ；称 G 为 H 的真母图。
称 H 为 G 的生成子图（ｓｐａｎｎｉｎｇ ｓｕｂｇ ｒａｐｈ）如果 H G 且 V （H ）＝V （G ）。 反
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之称 G 为 H 的生成母图，如图 １４１所示。
从一个图 G 中去掉其所有重边及环，所得的简单生成子图称为 G 的基础简单

图（ｕｎｄｅｒｌｙ ｉｎｇ ｓ ｉｍｐｌｅ ｇ ｒａｐｈ ），如图 １４２所示。
对图 G 的·非·空（为何？）顶点子集 V′V （G ），G 的子图如果以 V′为顶点集，以

G 中两端都在 V′上的边全体为其边集，则该子图称为 G 的导出子图（ｉｎｄｕｃｅｄ ｓｕｂ
ｇ ｒａｐｈ），记为 G ［V′］。

以·非·空（为何？）边子集 E′E （G ）为边集，以 E′中所有边的端点为顶点集的 G

的子图，称为 G 的边导出子图（ｅｄｇｅｉｎｄｕｃｅｄ ｓｕｂｇ ｒａｐｈ），记为 G ［E′］。
以上两种子图，其实，对应于抓取子图的两种运算。 下面是抓取子图的另两种

运算：
G－V′是从 G 中去掉顶点·真·子·集 V′V （G ）及与 V′相关联的一切边所得的剩

余子图。 易见

G － V′＝ G ［V＼V′］　　（注：记 V － V′为 V＼V′）
　　G－E′是从 G 中去掉边子集 E′E （G ） 后所得的 G 的·生·成子图。 注意到，G－
E′与 G ［E＼E′］有相同的边集，但两者不一定恒等，前者一定是生成子图，而后者不

一定如此。
关于这四种运算及其相互关系的例子请参看图 １４１及 １４３～１．４．７。 上述

四种运算是最基本的取子图运算，今后经常会遇到，一定要·认·真·掌·握·好。此外，我们

定义：

图 １４２图 １４１

图 １４７图 １４６图 １４５图 １４４图 １４３
　　G＋E′为往 G 上添加新边集 E′后所得的 G 的母图。
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为简单计，今后将

G ± ｛e｝ 简记为 G ± e；
G － ｛v｝简记为 G － v。

　　设 G １ 与 G ２ 为 G 的子图。如果 V （G １ ）∩V （G ２ ）＝，则称 G １ 与 G ２ 为不相交的

（ｄｉｓ ｊｏｉｎｔ ）。 如果 E （G １ ）∩E （G ２ ）＝（即没有公共边），则称 G １ 与 G ２ 为边不重的

（ｅｄｇｅｄｉｓ ｊｏｉｎｔ ）。 易见，如果 G １ 与 G ２ 为不相交的，则它们一定是边不重的，反之如

果 G １ 与 G ２ 是边不重的，它们仍可能为相交的。

图 １４８

G １ 与 G ２ 的并图（ｕｎｉｏｎ），记为 G １ ∪G ２ ，是 G 的一

个子图，其顶点集 V （G １ ）∪V （G ２ ），其边集为 E （G １ ）∪
E （G ２ ）。

类似地，可定义 G １ 与 G ２ 的交图（ｉｎｔｅｒｓｅｃｔ ｉｏｎ），
记为 G １∩G ２ 。

当 G １ 与 G ２ 不相交时其并图称为 G １ 与 G ２ 的不相

交并，且可简记为 G １＋G ２ 。当 G １ 与 G ２ 无公共边时，其
并图称为 G １ 与 G ２ 的边不重并。

F ∨H 表示不相交图 F 和 H 的联图（ｊｏｉｎ），它是

在图 F＋H 中，通过连接 F 和 H 中每对顶点所得图。 例如，K ２∨K ３＝K ５ 。
例 １４　n（≥４）个人的集会中，若每 ４人中一定有一人认识其他 ３ 人，则集会

中一定有一人认识其他 n－１人。
证明　作一图 G ，以全体集会中的人为其顶点集；两个顶点相邻当且仅当对应

的两个人相识。若 G 为完全图，证完。否则，任意·取·定二不相邻顶点 x 与 y，考虑子

图

H ＝ G － ｛x，y｝。
令 u 与 v 为 H 的·任·二顶点。由假设条件，｛x，y，u，v｝四个顶点中一定有一个与其他

三个相邻，而 x 与 y 是不相邻的，因此 u 与 v 中至少有一个，例如 u，与其他三个相

邻。 特别地，我们有 u 与 v 相邻。 由 u 与 v 的任意性，H 是个完全图。 这又导致 u

与 G 中其他顶点都相邻。 （图 １．４．８） ／／
上述例子与 １１ 节中的例子一样，都是“空手套狼”，因此，从中我们可以看清

图论证明的一些行为方式。

习　　题

１４１　证明：完全图的每个导出子图是完全图；偶图的每个导出子图是偶图。
１４２　设 G 为一简单图；n 为某固定整数：１＜n＜ν－１。 证明：若 ν≥４，且 G

中每个 n 顶点的导出子图均有相同的边数，则 GK ν 或 K
cν。
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１５　路和连通性

图 G 中的一条（u，v）途径（ｗ ａｌｋ）
W ＝ u ０e１u １e２…un－ １en un

其中 u＝u ０ ，v＝un，是一个有限非空序列，由顶点和边交替地组成，且其中每边 ej＝
uj－ １uj，１≤j≤n。 W 的顶点和边可重复出现（甚或 u＝v）。 其中，u 与 v 分别称为 W

的起点（ｏ ｒ ｉｇｉｎ）与终点（ｔｅｒｍ ｉｎｕｓ），其余顶点（有的可能是 u 或 v），称为 W 的内部

顶点（ｉｎｔｅｒｎａｌ ｖｅｒｔｅｘ）。 n 称为途径 W 的长（ｌｅｎｇ ｔｈ）。特别地，长为 ０ 的途径中没有

图 １５１　G

边，且只有一个顶点。当不引起混淆时，特别在简单图

中，W 可简写为顶点序列

W ＝ u ０u １…un－ １un

　　例如图 １５１的图 G 中，（C ，B ）途径

W ＝C aA d B cA f D g B

＝C A B A D B　　（简写）
其中 C 为起点，D 为终点，A ，B ，A ，D 为内部顶点。

途径 W 的节（ｓｅｃｔｉｏｎ）是 W 的一个子序列，且本

身也是一个途径。 例如，上例中，W 的（A ，D ）节 W １＝A B A D 。
W 的逆序列 unen un－ １…e２u １e１u ０ ，显然，也是一个途径，称为逆途径，记为 W

－ １ 。
例如，上例中

W
－ １ ＝ B g D fA cB d A aC

　　设途径 W １＝u ０u １…un－ １un，W ２＝un un＋ １…un＋ k－ １un ＋ k，则 W １ 与 W ２ 在 un 处衔接

起来所得的途径

W ＝ u ０ u １ … un－ １ un un ＋ １ … un＋ k － １ un＋ k

记为 W １W ２ 。
称边各不相同的途径为迹（ｔ ｒａｉｌ）。 例如，图 １５１ 中途径 B cA aC bA 是一条

（B ，A ）迹。 一条迹中，顶点仍可能重复出现。
顶点各不相同的途径称为路（ｐａｔｈ）。 例如，图 １５１ 中途径 B d A fD 是一条

（B ，D ）路。 一条路中，边一定不会重复出现，因此路一定是迹，反之结论不一定成

立。 今后，我们也常将路当作一个图或子图。
定理 １５１　每一（uv）途径包含一（uv）路。 （注：称一条途径包含另一条

途径，如果后者的序列是前者的子序列。）
证明　如果 u＝v，则结论显然成立；否则令 W ＝v０v １…vi…vj…vn 为一（u，v）

途径，其中 v ０＝u，vn＝v，且 u≠v。若 W 中的顶点互不相同，则 W 就是（u，v）路；不
然，设 vi＝vj（i＜j），则

W ′＝ v０v １…vivj＋ １…vn
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也是一条（u，v）途径，长度比 W 短。 若其中仍有重复顶点出现，则对 W ′重复上述

过程。 由于 W 长度的有限性，上述过程必停止于一（u，v）路。 ／／
推论 １５２　G 中存在（u，v）途径，当且仅当 G 中存在（u，v）路。 ／／
称图 G 中顶点 u 与 v 为连通的（ｃｏｎｎｅｃｔ ｅｄ）当且仅当 G 中存在（u，v）路（（u，

v）途径）。 容易验证，两顶点间的连通关系是 V 上的等价关系（即满足自反性、对
称性及传递性的二元关系）。 它将 V 划分为一些等价类

V １ ，…，V ω

使每个 V i 中的任二顶点 u 与 v 都连通（即存在（u，v）路）；而不同 V i 与 V j 之间的

任二顶点都不连通。 称每个导出子图

G ［V i］　　i＝ １，２，…，ω
为 G 的一个分支（ｃｏｍｐｏｎｅｎｔ ），称ω（G ）为 G 的分支数（参见图 １５２）。 当 ω（G ）＝
１时称 G 为连通的，否则为不连通的（ｄｉｓｃｏｎｎｅｃｔｅｄ）。 因此连通图中任两顶点间都

有一条路相连。

图 １５２　有 ３个分支的图 G

对任一非空顶点子集 SV ，令 S
珚＝V ＼S （注意：今后对两集合 A 与 B ，常用

A ＼B 来表示差集 A －B ），我们用记号

［S ，S珚］G 　　（简写为 ［S ，S珚］）
表示 G 中两端分别在 S 及 S

珚中的一切边的集合（后文中将称为边割）。
定理 １５３　G 连通，当且仅当对任 SV （G ） 都有 ［S ，S珚］≠。
证明　（习题）／／
图 G 中若顶点 u 与 v 连通，则 G 中最短（u，v）路的长，称为 u 与 v 之间的距离

（ｄｉｓｔ ａｎｃｅ），记为 d G （u，v）（其简写为 d（u，v））。当 G 中 u 与 v 不连通时，定义 dG （u，
v）＝∞。 易证，任一图 G 中，任 ３个顶点 u，v，w 之间的距离都满足三角不等式（习
题 １５７）

d（u，v） ＋ d（v，w ） ≥ d（u，w ）／／
　　例 １５　简单图 G 中，若 δ≥ k，则 G 中有长≥k 的路。

证明　取 G 中任一最长路 P 的起点（终点），设为 u。则每个与 u 相邻的顶点 x

应都在 P 上（否则 x 与 P 构成比 P 更长的路，矛盾），因此 P 的顶点数≥d（u）＋１
≥k＋１。 ／／

例 １６　连通图 G 中，任二最长路必有公共顶点。
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证明　反证，假设 G 中有二无公共顶点的最长路 P 与 Q 。令分别属于 V （P ）与
V （Q ）的·顶·点·对中距离最近的顶点对为 p 与 q；R 为 G 中的最短（p，q）路。易见，路
P 与 R 只有一个公共顶点 p；路 Q 与 R 只有一个公共顶点 q。顶点 p 与 q 分别将 P

与 Q 各分成两个节，从其中分别各选一最长的，设为 P １ 与 Q １ ，则它们和 R 一起构

成 G 中的一条·路，且比 P 长，矛盾。 （图 １５３）／／
例 １７　G 连通，且每个顶点 v 上 d（v）＝偶数，则每个顶点 v 上有 ω（G－v）≤

d（v）／２。
证明　任取一顶点 v。 首先，v 与 G－v 的·每·个·分·支之间至少有两边相连，假设

不然，设 G－v 的分支 H 与 v 之间的边数≤１。 由于 G 连通，它们之间应恰只有一

条边相连。 令 w 为 V （H ）中唯一与 v 相邻的顶点。 则由假设条件得，图 H 中恰只

有一个奇点 w ，这与推论 １３２矛盾。 再注意到 v 与 G－v 的各分支之间总共有小

于或等于 d（v）条边相连（注意到：v 可能与一些环相关联），得证。 （图 １５４）／／

图 １５４图 １５３
　　例 １８　设一金库只有一个大门，其内部被分隔成一些小房间（把走廊、门厅

等都看成房间）。各房间除了一个放有稀世大钻石的房间外，都有偶数个门（大门也

是一个门）。 则能撬开每个门的大盗一定可将钻石偷走。
证明　不计金库大门（则大门门厅也只有奇数个门），以金库的所有房间为顶

点集作一图 G ，两顶点间用一边相连当且仅当对应的两个房间有一个门相连。则图

G 中恰只有与大门门厅及存放钻石的房间对应的两个顶点（设为 x 与 y ）为奇点，
其余顶点都是偶点。

我们的问题变成要证明任一图 G 中若恰只有两个奇点 x 与 y，则 G 中一定存

在（x，y）路。
设若不然，则 G 不连通，且 x 与 y 在 G 的不同分支中。 于是，G 中包含 x 的分

支，是一个只包含一个奇点的图，这与推论 １３２ 相矛盾。 ／／
例 １９　任一 ν≥３ 的简单、连通、非完全图 G 中，一定有三个顶点 u，v，w ，使

得

uv，vw ∈ E 而 uw∈／E

　　证明　由假设条件 G 中存在二不相邻顶点 u 与 z，且 u 与 z 是连通的。令 v 与
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w 为最短（u，z）路的第 ２与第 ３个顶点，则 u，v，w 即为所求。 ／／
例 １１０　ν≥２的图 G 中，若 ε≤ν－２，则 G 不连通。 （等价地，·每·个·连·通·图 G· ·都

·有 ε· ≥· ν－· １· ）
证明　对 ν归纳。当 ν＝２ 时，显然命题成立。假设对 ν＜n（≥３）时命题都成立，

而 ν（G ）＝n。 由握手引理及 ε≤ν－２易见，δ≤１。 若 δ＝０ 则命题成立，否则令 u 为

G 中度为 １ 的顶点。 由于 ν（G－u）＝n－１＜n，且 ε（G－u）＝ε（G ）－１≤ν（G－u）－
２，由归纳假设知，G－u 不连通。 但 u 在 G 中的度为 １，因此 G 也不连通。 ／／

（另一证明：当 ε＝０时，显然命题成立。 假设命题不成立，存在 ν≥２的·连·通·图
G 满足 ε≤ν－２。令 G 为这种图中边数为最少的。任取 G 中一边 xy，由 G 的边数的

最少性知，G－xy 不连通，且恰有两个分支，设为 G １ 及 G ２ ，它们的边数都少于 ε（G ）
且都连通。 因此由假设知 ε（G i）≥ν（G i）－１，i＝１，２。 从而 ε（G ）＝ε（G １ ）＋ε（G ２ ）＋１
≥ν（G ）－１，矛盾。）（注：此为对 ε归纳法的一种改头换面的写法）

习　　题

１５１　证明：G 中长为 k 的（vi，vj）途径的数目，就是 A
k 中的（i，j）元素，其中

A 为 G 的邻接矩阵。
１５２　（１） 证明：对简单图 G 有，ε＞ ν－１

２ G 连通。
（２） 对于 ν＞１，试给出 ε＝ ν－１

２ 的不连通简单图。
１５３　（１） 设有 ２n 个交换台，每台至少与 n 个台有直通线路相连，则任二台

间都可通话。 （问题等价于：一个顶点数为 ２n 的简单图 G 中，如果 δ≥n，则 G 为连

通图。）
（２） 当 ν是偶数时，试给出一个不连通的（［ν／２］－１）正则简单图。
１５４　（１） G 不连通G

c 连通。
（２） 证明或反证：G 不连通G

c 连通。
１５５　对任意图 G 的任一边 e，有 ω（G ）≤ω（G－e）≤ω（G ） ＋１。
１５６　若图 G 中恰有两个奇点 u 与 v，则 G 中一定有一（u，v）路。
１５７　对任一图的任三个顶点 u，v，w 都有

d（u，v） ＋ d（v，w ） ≥ d （u，w ）（即，满足三角不等式）。
　　１５８　令 u 与 v 为连通图 G 的任二顶点，则 G 中存在一（u，v）途径 W 包含

G 的所有顶点。
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１６　圈

一个·长·大·于０· 的途径，如果起点与终点相同，就称为闭途径（ｃｌｏ ｓｅｄ ｗ ａｌｋ）。 边

各不相同的闭途径称为闭迹 （ｃｌｏ ｓｅｄ ｔｒａｉｌ）。 顶点各不相同的闭迹称为圈（ｃｙｃｌｅ）。
我们有时也将圈当作一个图或子图。长为 k 的圈称为 k－圈（ｋｃｙｃｌｅ）。k 为奇数或偶

数的 k圈分别称为奇圈 （ｏｄｄ ｃｙｃｌｅ）或偶圈 （ｅｖｅｎ ｃｙｃｌｅ）。 １圈由一条环组成；２圈
由两条平行边组成；我们还常把 ３圈称为三角形。

例如图 １６１ 中

图 １６１　G

　　　　闭途径：C aA aC ；及 C bA fD iD fA aC 。
　　　　闭迹：C aA cB d A fD hD iD eC ；及 D hD iD 。
　　　　圈：C aA cB gD eC ；及 A d B cA 等。
定理 １６１　图 G 为偶图，当且仅当 G 中不包含奇

圈。
证明　设 G 的 ２划分为（X ，Y ），由 G 的定义，G

的任一圈中，X 和 Y 的顶点一定交错出现，从而其长必为

偶数。
不妨设 G 为连通的（不然，只要证明定理对 G 的每个分支成立即可）。 任取

一顶点 u，令
X ＝ ｛x ∈ V │d（u，x） ＝偶数 ｝

Y ＝ ｛y ∈ V│d（u，y） ＝ 奇数｝
　　由于，易见，（X ，Y ）为集合 V 的 ２划分，只要再证 X （和 Y ）都是 G 的独立集，
即 X （或 Y ）中任二顶点 v，w 都不相邻即可： 令 P 与 Q 分别为最短（u，v）路与最

短（u，w ）路。设 u′为 P 与 Q 的最后一个公共顶点； 而 P′与 Q′分别为 P 的（u′，v）
节与 Q 的（u′，w ）节。 则 P′与 Q′只有一公共顶点。 又，由于 P 与 Q 的（u，u′）节的

长相等，P′与 Q′的长有相同的奇偶性，因此 v 与 w 不能相邻，不然

v（P′）－ １Q′w v

将是 G 中的一奇圈，矛盾。 ／／

图 １６２
以下例子很容易证明（习题），只要考虑其最长路即可，其结论可当命题直接
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使用：
例 １１１　图 G 中 δ≥２G 中含圈。
例 １１２　简单图 G ，δ≥２G 含长≥δ＋１ 的圈。

习　　题

１６１　若边 e 在 G 的一闭迹中，则 e 在 G 的一圈中。
１６２　证明：（１） ε≥νG 含圈。
（２） ε≥ν＋４G 含两个边不重的圈。
１６３　证明：任一连通偶图 G＝（X ，Y ，E ）的 ２划分（X ，Y ）是唯一的。
１６４　证明或反证：
（１） G 中有两个不同的（u，v）路，则 G 中包含圈。
（２） G 中有一闭途径，则 G 中包含圈。
（３） G 中有一长为奇数的闭途径，在则 G 中含一奇圈。
１６５　设图 G 的顶点可用两种颜色进行着色，使每个顶点都至少与两个异

色顶点相邻，则 G 中一定包含偶圈。
１６６　５×５座位的教室中，不可能让每个学生都作一上下左右移动，使每个

人都换了座位。
１６７　简单图 G ，δ≥２G 含长≥δ＋１的圈。
１６８　设简单图 G 中 ε＝ν２／４，则或者 G 含奇圈；或者 GK ν／２， ν／２ 。
１６９　（１） 设边 a 与边 b 共圈，边 b 与边 c 共圈，则边 a 与边 c 共圈。
（２） 由（１）证明 E （G ）可划分为一些互不相交的子集 E １ ，E ２ ，…，E b，使每个

G ［E i］中任二边共圈。

１７　最短路问题

如果在图 G 的每条边 e 上，都赋予一非负实数 w （e），则称 G 为一赋权图

（ｗ ｅｉｇｈｔｅｄ ｇｒａｐｈ）；w （e）称为边 e 的权（ｗ ｅｉｇｈｔ ）。 因此，w 是定义在 E （G ）上的一个

非负实函数：w ：E （G ）→Ｒ。例如，在通讯网中它可能是一条线路的建设费、维护费

或租用费；在人际关系图中，它可能代表两人之间关系的紧密程度等等。
对于赋权图 G 的子图 H ，称 H 中所有边的权的和 w （H ） ＝ ∑

e∈ E （ H ）
w （e） 为 H

的权。许多优化问题是要在赋权图中，寻找满足一定条件的子图，使它的权最小（最
大）。

图中距离的概念（其中每边的长为 １），可以很自然地推广如下：当 H 为一条

路 P 时，称 w （P ）为路 P 的长。 特别地称最短（u，v）路的长为从顶点 u 到 v 的距
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离，记为 d（u，v）。
本节我们所要考虑的问题，是对任意给定的一个赋权图 G ，及 G 中两个指定的

顶点 u ０ 与 v ０ ，求出其最短（u ０ ，v０ ）路。易见，只要考虑简单连通图的情形就够了。这
里我们假定每边 e 的权 w （e）都是大于 ０的实数。因为当一条边 e＝uv 的权为 ０时，
我们可以把 u 和 v 合并成一个顶点。 又，我们约定，边 e∈／E （G ）当且仅当 w （e） ＝
∞。

下面将要提到的 Ｄｉｊｋ ｓｔｒａ（１９５９）算法，将求出从一指定顶点 u ０到 G 的其余所

有顶点的最短路，而不仅仅是最短（u ０ ，v０ ）路。
对 G 的顶点真子集 SV （G ），及 S

珚＝V （G ）－S ，将 u ０∈S 到 S
珚的距离定义为

d（u ０ ，S
珚） ＝ ｍｉｎ｛d（u ０ ，x）│x ∈ S

珚｝
设顶点 v∈S

珚使 d（u ０ ，v）＝d（u ０ ，S珚），而 P＝u ０u １u ２…ujv 为最短（u ０ ，v）路，则易见：
（１） u ０ ，u １ ，u ２ ，…，uj∈S 。
（２） u ０ u １ u ２… uj是一最短（u ０ ，uj）路。
（３） d（u ０ ，S珚）＝d（u ０ ，v）＝d（u ０ ，uj）＋w （uj v）＝ ｍｉｎ

u ∈ S ， v∈ S
珚｛d（u ０ ，u）＋w （uv）｝。

算法的原理是逐步求出顶点序列

u １ ，u ２ ，u ３ ，…
使

d（u ０ ，u １ ） ≤ d（u ０ ，u ２ ） ≤ d（u ０ ，u ３ ） ≤ …
记

S ０ ＝ ｛u ０ ｝
S k ＝ ｛u ０ ，u １ ，…，uk｝，S珚k ＝ V＼S k

P k 为最短（u ０ ，uk）路，k ＝ １，２，…
　　（１） 求 u １∈S

珚０：使
d（u ０ ，u １ ） ＝ ｍｉｎ

u∈ S ０ ， v∈ S
珚０
｛d（u ０ ，u） ＋ w （uv）｝ ＝ ｍｉｎ

v∈ S ０
｛w （u ０v）｝

得 S １＝S ０∪｛u １ ｝ ，P １＝u ０u １ 。
（２） 若已求得 S k１ ；d（u ０ ，u １ ），…，d（u ０ ，uk１ ）；及最短 （u ０ ，ui）路 P i，i＝１，２，…，

k１（图 １７１）。 求 uk∈S
珚

k１ ，使
d（u ０ ，uk） ＝d（u ０ ，S珚k１ ）

＝ｍｉｎ
u ∈ S

k１
ｍｉｎ
v∈ S
珚

k１
｛d（u ０ ，u） ＋ w （uv）｝

＝ｍｉｎ
v∈ S

珚
k１
｛l（v）｝

其中

l（v） ＝ ｍｉｎ
u ∈ S

k１
｛d（u ０ ，u） ＋ w （uv）｝ （）

即，首先对 S k１中每个 v，按（）式求出l（v）。 使l（v）达到最小的 v 就是 uk，且这时

有l（uk）＝d（u ０ ，uk）。 至此，得 S k＝S k１∪｛uk｝ ；P k＝P jujuk，某 j∈｛１，２，…，k１ ｝，uj
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就是当 v＝uk时使（）式右边达到最小的 u∈S k１ 。

图 １７１

当进行下一步时，易见，对每个 v∈S
珚

k，
我们无需再直接用（）式，重复通过 S k 中的

每个 u 去求 l（v），只要通过 uk 更新（ｕｐｄａｔｅ）
l（ v ） 即可：

l（v）←ｍｉｎ ｛l（v） ，l（uk） ＋ w （uk v）｝
　　下面的算法只求出从 u ０ 到其他各顶点

之间的·距·离。 若想求出从 u ０ 到其他各顶点

之间的·最·短·路，只需按上述作一些改动即可

（图 １．７．１）。
Ｄｉｊｋｓｔｒａ算法

（１） 作为开始：l（u ０ ）＝０，l（v）＝∞　　v≠u ０ ；
S ０ ＝ ｛u ０ ｝，k ＝ ０

　　（２） （这时已求出 S k＝｛u ０ ，u １ ，…，uk｝，且对每个 uj∈S k，有 l（uj）＝d（u ０ ，uj））
l（v）←ｍｉｎ ｛l（v），l（uk） ＋ w （uk v）｝　　v ∈ S

珚
k，

再计算 ｍｉｎ ｛l（v）｝，设其最小值点为 uk＋ １ ，令
S k＋ １ ＝ S k ∪ ｛uk＋ １ ｝

　　（３） 若 k＝ν－１，停止；不然，令 k←k＋１，并回到（２）。
计算复杂性

　　　　　　加法：ν（ν－１）／２
　　　　　　比较： ν（ν－ １）／２×２
　　　　　　v∈S

珚： （ν－１）２
总共为 O （ν２ ）。

凡是时间复杂性为 p （ν，ε） 的算法（其中 p（x，y） 为一二元多项式），著名数学

家 ＪＥｄｍｏｎｄｓ 给它取了一个名字，称为“好算法”（“ｇｏｏｄ ａｌｇ ｏ ｒｉｔｈｍ ”）或多项式时

间算法（ｐｏ ｌｙｎｏｍ ｉａｌ ｔｉｍｅ ａｌｇ ｏｒｉｔｈｍ），以区别于指数型时间算法（ｅｘｐｏｎｅｎｔ ｉａｌ ｔ ｉｍｅ
ａｌｇ ｏｒ ｉｔ ｈｍ），即时间复杂性无法用输入长 n 的多项式作为其上界的算法，例如 ２n，
n
ｌｏ ｇ n 等。 在 １０－ ６秒／步运算速度下，好算法与指数型时间算法的表现举例如下：

复杂性 n＝ １０ ２０ ３０ ４０ ５０
n
３ ０００１秒 ０００８ 秒 ００２７秒 ００６４秒 ０１２５秒

n
５ ０１秒 ３２ 秒 ２４３秒 １７分 ５２分
２n ０００１秒 １０ 秒 １７９分 １２７ 天 ３５７年

由上表可见，两种算法有天壤之别。
上述算法中，若只关心求 d（u ０ ，v０ ），则算法进行到 v０∈S k 时停止即可。 在计算

过程中，每步所得子图都是一棵·树。因为·每·步都是在当时已经得到的子图（是树）上
增加·一·条·边·及·一·个·顶·点。因此该过程称为树生长过程（ｔｒｅｅ ｇ ｒｏｗ ｉｎｇ ｐｒｏｃｅｄｕｒｅ）。且
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在该树中的（u ０ ，v）路，就是最短（u ０ ，v）路。 又，若要记录 u ０ 到每个顶点 v 的最短

路，只要记录该路中 u 的前一个顶点（即该树中 v 的父亲，也就是使（）式达到最

小的 u）即可。 图 １７２展示了从 u ０ 到其余顶点的最短路的全过程，其中粗边为树

边，每个顶点 v 上所标的数字即为当时的 l（v）。

图 １７２

习　　题

１７１　描述一个算法以确定

（１） 一图的各个分支。
（２）一图的围长（ｇｉｒ ｔ ｈ，即最短圈的长）。

并说明你的算法好到什么程度。
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第 ２ 章　树

在连通图中，树是最简单的，然而也是最重要的一种图。 树的应用领域非常广

泛，如计算机科学、生物学、晶体结构学、社会科学等。同时它也是图论的理论基础，
由它自身或通过它可导出许多结果。

２１　树 和 割 边

称边 e 为图 G 的割边（ｃｕｔ ｅｄｇｅ或 ｂｒｉｄｇ ｅ），如果ω（G－e）＞ω（G ）（即，ω（G－e）
＝ω（G ） ＋１，参见习题 １５５ ）。 简言之，割边就是去掉后能使连通图（或不连通图

图 ２１１

的分支）变成不连通的一条边。 反之，如果 ω（G－e）
＝ω（G ），则称 e 为 G 的非割边。例如图 ２１１中，边
bc，d e 及 hi都是该图的割边，其他边都是该图的非

割边。 从图中我们发现，每条割边都不在任一圈中，
而每条非割边都至少在一圈中。 这结论是普遍成立

的：
定理 ２１１　e 为 G 的非割边e 在 G 的一圈

中。 （等价地，e 为 G 的割边e 不在 G 的任一圈中。）
证明　令 e＝xy，则 x 与 y 在 G 的同一分支中。 于是

　　　　　　　　e 为 G 的非割边

ω（G－e）＝ω（G ）
x 与 y 在 G－e 的同一分支中

G－e 中有（x，y）路
G 中有含 e 的圈。 ／／

（另一证法：不妨设 G 连通（不然，只要考虑 G 中含 e 的分支即可。）
　　设 G 的一条边 e＝uv 包含在 G 的一圈 C 中。 考虑 G 中任二顶点 x 与

y。令 P 为 G 中一（x，y）路。若 e 不在 P 上，则 P 仍是 G－e 中的一条（x，y）路；若
e 在 P 上，将 P 中的边 e 用 C 的不含 e 的（x，y）节代替，得到 G－e 中一条（x，y）
途径，从而，由推论 １５２，G－e 中仍然存在一条（x，y）路。 由 x 与 y 的任意性知，
G－e 仍然连通。 因此 e 为 G 的非割边。

　　设边 e＝uv 为 G 的非割边，则 G－e 仍然连通。 令 P 为 G－e 中的一条

（u，v）路，则 e 在 G 的圈 P ＋e 中。 ／／）
称 不含圈的图为无圈图 （ａｃｙｃｌｉｃ ｇｒａｐｈ）或林（ｆｏ ｒｅｓ ｔ ）。 称连通无圈图为树
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（ｔｒｅｅ）。 树中度为 １的顶点称为树叶（ｌｅａｆ）。 例如，六个顶点上，总共有六棵不同构

的树，如图 ２１２所示。

图 ２１２

定理 ２１２　连通图 G 为树，当且仅当 G 的每条边都是 G 的割边。
证明　注意到以下事实即可：

G 无圈G 中每边不在任一圈中

 G 中每边都是 G 的割边／／
　　定理 ２１３　树中任二顶点间有唯一的路相连。

证明　反证，假设存在树 T ，其中存在二顶点 u 与 v，其间有二不同（u，v）路 P

和 Q 相连。 因 P≠Q ，一定存在，例如，P 的一条边 e＝xy，它不是 Q 的边。 显然图

P ∪ Q － e

是连通的，从而其中包含一条（x，y）路 W 。 于是 W ＋e 是 T 中的一 圈，这与 T 为

无圈图相矛盾。 ／／
注 １　其实，在上述定理的证明中，由路的定义易见，（有相同的起点 u 和终点

v 的）两条不同的（u，v）路 P 及 Q 中，任一条的边集不会真包含另一条的边集（假
设不然，例如设 E （P ）E （Q ），则存在 Q 的一条边 e，使 E （P ）E （Q－e），但 Q －e

中 u 与 v 不连通，因此不可能包含（u，v）路 P ，矛盾）。
注 ２　以下结论一般是不成立的：图 G 中存在闭途径，则 G 中存在圈（例如，设

图 G 就是一条边 e＝xy，则 x eyex 就是 G 中的一条闭途径，但不是圈）。因此不能因

为 P∪Q 为闭途径，而得出 T 中包含圈的结论。
推论 ２１４　设 G 为无环图，则

G 是树G 中任二顶点间有唯一的路相连

证明　（习题） ／／
定理 ２１５　树 T 中 ε＝ν－１。
证明　对 ν进行归纳。当 ν＝１ 时，T＝K １ ，结论成立。假设定理对小于 ν个顶点

的树成立，而 T 为 ν（≥２）个顶点的树。 任取 T 的一边 uv。 它是 T 中的一条路，由
定理 ２１３ 知（或直接用定理 ２１２），T －uv 不连通，且它恰有二分支 （习题

·４２·



１５５），设为 T １ 与 T ２ 。 它们都是连通无圈图，因此都是树。 又，它们的顶点数都小

于 ν。 因此由归纳假设知

ε（T j） ＝ ν（T j） － １　　j＝ １，２
所以

ε（T ） ＝ε（T １ ） ＋ ε（T ２ ） ＋ １
＝ν（T １ ） ＋ ν（T ２ ） － １
＝ν（G ） － １／／

　　推论 ２１６　每棵非平凡树 T 至少有两个度为 １的顶点。
证明　首先由于 T 为非平凡连通图，它的每一顶点的度大于等于 １。设 G 中共

有 k 个度为 １ 顶点，由定理 １３１ 及 ２１２知
２ν－ ２ ＝ ∑

v∈ V

d（v） ＝ k＋ ∑
d （ v ）≥ ２

d（v） ≥ k＋ ２（ν－ k）
故有 k≥２。 ／／

例 ２１　证明恰只包含两个度为 １顶点的树 T 是路。
证明　由定理 ２１３ 及 １３１ 得

２ν－ ２ ＝ ∑
v∈ V

d（v） ＝ ２ ＋ ∑
d （ v ）≥ ２

d（v） ≥ ２ ＋ ２（ν－ ２）
所以

∑
d （ v ）≥ ２

d（v） ＝ ２（ν－ ２）
因此·连·通·图 T 中除了两个度为 １的顶点外，其余的度都是 ２。这样的图，显然，只能

是一条路（可用对顶点数的归纳法加以证明）。 ／／
一棵树 T 如果是 G 的生成子图，就称为 G 的生成树（ｓｐａｎｎｉｎｇ ｔｒｅｅ ）。 从任给

的一个·连·通·图 G ，可用以下两个方法，来求出其生成树 T ：
（１） 求 G 的极小（ｍｉｎ ｉｍａｌ）·连·通·生·成·子·图 T （即 T 为 G 的连通生成子图，但 T

的任一真子图都不是 G 的·连·通·生·成·子·图）。 由 T 的定义知，ω（T ）＝１，且对 T 中·每
·边 e 都有 ω（T－e）＝２。 从而 T 的每边为 T 的割边，故由定理 ２１２知 T 为树，且
为 G 的生成树。

求 T 的具体做法如下：在·保·持·连·通·性·的·前·提·下，逐步将 G 中可去的边去掉，直
到不能再去掉为止。 易见，这样求出的子图就是 G 的极小·连·通·生·成·子·图。 又，所去

的边一定是当时（G 的子图）的非割边，因此一定在 G 的一圈中。故每步至少破坏 G

的一圈。 （参看图 ２１３中的上一排图）
（２） 求 G 的极大（ｍａｘ ｉｍａｌ）无圈子图 T （即 G 的任一个子图 H 若为 T 的·真·母

·图，则 H 一定含圈）。 由定义，首先易见，T 一定是 G 的生成子图（不然，往 T 中加

上 G 中不属于 T 的孤立顶点后仍然为无圈图，导致与 T 的极大性矛盾）。 又，T 一

定是连通的。 不然，由于 G 连通，G 中一定存在一条边，设为 e，其两端点在 T 的二

不同分支中。 从而 T＋e 仍是无圈图（因 e 是 T＋e 的割边，从而 T＋e 中无含 e 的

圈），矛盾。 故 T 为 G 的生成树。
·５２·


