0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 原子和分子物理 > 原子物理学

相同语种的商品

浏览历史

原子物理学


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
原子物理学
  • 书号:9787030236210
    作者:Christopher J.Foot
  • 外文书名:Atomic Physics
  • 装帧:平装
    开本:16开
  • 页数:352
    字数:418000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:
  • 定价: ¥128.00元
    售价: ¥128.00元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

  本书是为高年级本科生“高等原子物理”课撰写的教材,本书前几章介绍了原子物理的基本理论,可以使初次接触本领域的本科生建立基础,从而帮助他们理解书中内容。本书介绍了最新的研究进展及其在玻色-爱因斯坦凝聚、物质波干涉和利用捕陷离子进行量子计算方面的应用。通常的教材书仅强调了原子结构的量子解释,本书作为补充则重点强调了理论的实验基础,最后几章尤其如此。本书包括大量习题,可供教学使用。
  本书作者为牛津大学物理系教授Christopher Foot。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1 Early atomic physics
    1.1 Introduction
    1.2 Spectrum of atomic hydrogen
    1.3 Bohr's theory
    1.4 Relativistic effects
    1.5 Moseley and the atomic number
    1.6 Radiative decay
    1.7 Einstein A and B coefficients
    1.8 The Zeeman effect
    1.8.1 Experimental observation of the Zeeman effect
    1.9 Summary of atomic units
    Exercises
    2 The hydrogen atom
    2.1 The Schrödinger equation
    2.1.1 Solution of the angular equation
    2.1.2 Solution of the radial equation
    2.2 Transitions
    2.2.1 Selection rules
    2.2.2 Integration with respect to θ
    2.2.3 Parity
    2.3 Fine structure
    2.3.1 Spin of the electron
    2.3.2 The spin-orbit interaction
    2.3.3 The 6ne structure of h、rdrogen
    2.3.4 The Lamb shift
    2.3.5 Transitions between fine-structure levels
    Further reading
    Exercises
    3 Helium
    3.1 The ground state of helium
    3.2 Excited states of helium
    3.2.1 Spin eigenstates
    3.2.2 Transitions in helium
    3.3 Evaluation of the integrals in helium
    3.3.1 Ground state
    3.3.2 Excited states: the direct integral
    3.3.3 Excited states: the exchange integral
    Further reading
    Exercises
    4 The alkalis
    4.1 Shell structure and the periodic table
    4.2 The quantum defect
    4.3 The central-field approximation
    4.4 Numerical solution of the Schrödinger equation
    4.4.1 Self-consistent Solutions
    4.5 The spin-orbit interaction: a quantum mechanical approach
    4.6 Fine structure in the alkalis
    4.6.1 Relative intensities of fine-structure transitions
    Further reading
    Exercises
    5 The LS-coupling scheme
    5.1 Fine structure in the LS-coupling scheme
    5.2 The jj-coupling scheme
    5.3 Intermediate coupling: the transition between coupling schemes
    5.4 Selection rules in the LS-coupling scheme
    5.5 The Zeeman effect
    5.6 Summary
    Further reading
    Exercises
    6 Hyperflne strueture and isotope shift
    6.1 Hyperfine structure
    6.1.1 Hyperfine structure for s-electrons
    6.1.2 Hydrogen maser
    6.1.3 Hyperfine structure for l≠0
    6.1.4 Comparison of hyperfine and fine structures
    6.2 Isotope shift
    6.2.1 Mass effects
    6.2.2 Volume shift
    6.2.3 Nuclear information from atoms
    6.3 Zeeman effect and hyperfine structure
    6.3.1 Zeeman effect of a weak field,µBB 6.3.2 Zeeman effect of a strong field,µBB>A
    6.3.3 Intermediate field strength
    6.4 Measurement of hyperfine structure
    6.4.1 The atomic-beam technique
    6.4.2 Atomic clocks
    Further reading
    Exercises
    7 The interaction of atoms with radiation
    7.1 Setting up the equations
    7.1.1 Perturbation by an oscillating electric field
    7.1.2 The rotating-wave approximation
    7.2 The Einstein B coefficients
    7.3 Interaction with monochtomatic radiation
    7.3.1 The concepts of π-pulses andπ/2-pulses
    7.3.2 The Bloch vector and Bloch sphere
    7.4 Ramsey fringes
    7.5 Radiative damping
    7.5.1 The damping of a classical dipole
    7.5.2 The optical Bloch equations
    7.6 The optical absorption cross-section
    7.6.1 Cross-section for pure radiative broadening
    7.6.2 The saturation intensity
    7.6.3 Power broadening
    7.7 The a.c.Stark effect or light shift
    7.8 Comment on semiclassical theory
    7.9 Conclusions
    Further reading
    Exercises
    8 Doppler-free laser spectroscopy
    8.1 Doppler broadening of spectral lines
    8.2 The crossed-beam method
    8.3 Saturated absorption spectroscopy
    8.3.1 Principle of saturated absorption spectroscopy
    8.3.2 Cross-over resonances in saturation spectroscopy
    8.4 Two-photon spectroscopy
    8.5 Calmration in 1aser spectroscopy
    8.5.1 Calibration of the relative frequency
    8.5.2 Absolute calibration
    8.5.3 Optical frequency combs
    Further reading
    Exercises
    9 Laser Cooling and trapping
    9.1 The scattering force
    9.2 Slowing an atomic beam
    9.2.1 Chirp Cooling
    9.3 The optical molasses technique
    9.3.1 The Doppler Cooling limit
    9.4 The magneto-optical trap
    9.5 Introduction to the dipole foroe
    9.6 Theory of the dipole force
    9.6.1 Optical lattice
    9.7 The Sisyphus Cooling technique
    9.7.1 General remarks
    9.7.2 Detailed description of Sisyphus Cooling
    9.7.3 Limit of the Sisyphus Cooling mechanism
    9.8 Raman transitions
    9.8.1 Velocity selection by Raman transitions
    9.8.2 Raman Cooling
    9.9 An atomic fountain
    9.10 Conclusions
    Exercises
    10 Magnetic trapping,evaporative Cooling and Bose-Einstein condensation
    10.1 Principle of magnetic trapping
    10.2 Magnetic trapping
    10.2.1 Confinement in the radial direction
    10.2.2 Confinement in the axial direction
    10.3 Evaporative Cooling
    10.4 Bose-Einstein condensation
    10.5 Bose-Einstein condensation in trapped atomic vapours
    10.5.1 The scattering length
    10.6 A Bose-Einstein condensate
    10.7 Properties of Bose-condensed gases
    10.7.1 Speed of sound
    10.7.2 Healing length
    10.7.3 The coherence of a Bose-Einstein condensate
    10.7.4 The atom laser
    10.8 Conclusions
    Exercises
    11 Atom interferometry
    11.1 Young's double-slit experiment
    11.2 A diffraction grating for atoms
    11.3 The three-grating interferometer
    11.4 Measurement of rotation
    11.5 The diffraction of atoms by light
    11.5.1 Interferometry with Raman transitions
    11.6 Conclusions
    Further reading
    Exercises
    12 Ion traps
    12.1 The force on ions in an electric field
    12.2 Earnshaw's theorem
    12.3 The Paul trap
    12.3.1 Equilbrium of a ball on a rotating saddle
    12.3.2 The effective potential in an a.c.field
    12.3.3 The linear Paul trap
    12.4 Buffer gas cooling
    12.5 Laser cooling of trapped ions
    12.6 Quantum jumps
    12.7 The Penning trap and the Paul trap
    12.7.1 The Penning trap
    12.7.2 Mass spectroscopy of ions
    12.7.3 The anomalous magnetic moment of the electron
    12.8 Electron beam ion trap
    12.9 Resolved sideband Cooling
    12.10 Summary of ion traps
    Further reading
    Exercises
    13 Quantum computing
    13.1 Qubits and their properties
    13.1.1 Entanglement
    13.2 A quantum logic gate
    13.2.1 Making a CNOT gate
    13.3 Parallelism in quantum computing
    13.4 Summary of quantum computers
    13.5 Decoherence and quantum error correction
    13.6 Conclusion
    Further reading
    Exercises
    A Appendix A: Perturbation theory
    A.1 Mathera&tics of perturbation theory
    A.2 Interaction of classical oscillators of similar frequencies
    B Appendix B: The calculation of electrostatic energies
    C Appendix C: Magnetic dipole transitions
    D Appendix D: The line shape in saturated absorption spectroscopy
    E Appendix E: Raman and two-photon transitions
    E.1 Raman transitions
    E.2 Two-photon transitions
    F Appendix F: The statistical mechanics of Bose-Einstein condensation
    F.1 The statistical mechanics of photons
    F.2 Bose-Einstein condensation
    F.2.1 Bose-Einstein condensation in a harmonic trap
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证