0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 矿业工程 > 煤岩破坏电磁辐射效应及其应用

相同语种的商品

浏览历史

煤岩破坏电磁辐射效应及其应用


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
煤岩破坏电磁辐射效应及其应用
  • 书号:9787030476319
    作者:聂百胜,何学秋,朱郴韦
  • 外文书名:
  • 装帧:平脊精装
    开本:B5
  • 页数:356
    字数:425
    语种:zh-Hans
  • 出版社:
    出版时间:2016-03-30
  • 所属分类:
  • 定价: ¥138.00元
    售价: ¥109.02元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

煤与瓦斯突出、冲击矿压等煤岩动力灾害现象严重威胁着煤矿的安全高效生产。本书在大量实验室试验和现场试验的基础上,结合信号处理、损伤力学、物理化学和电磁动力学等多学科的理论研究,比较系统地论述煤岩破坏电磁辐射的基本规律,揭示煤岩等多孔介质破坏过程与电磁辐射信息之间的关系,建立三维煤岩力电耦合的损伤力学模型,对其中的参数进行计算,利用该模型和试验结果建立煤岩动力灾害预警准则,并提出对煤岩体应力的测试方法,对煤岩体电磁辐射场进行模拟和验证,对电磁辐射天线进行模拟分析和选型,对电磁辐射天线进行测试分析。同时开发了矿用高速电磁辐射信号测试及分析系统,对煤矿井下工作面煤岩体和干扰噪声电磁辐射信号进行测试,分析其频谱特征;对煤岩样及煤矿掘进巷道的力电耦合场进行模拟;在煤矿井下对电磁辐射测试煤岩体应力状态和预测煤岩动力灾害进行试验研究,验证试验和理论分析结果。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 第1章绪论1
    1.1矿山煤岩动力灾害研究进展1
    1.1.1煤与瓦斯突出现象1
    1.1.2煤与瓦斯突出机理研究现状2
    1.1.3冲击矿压机理研究进展8
    1.2煤岩电磁效应研究现状11
    1.2.1电磁辐射在地震预报方面研究现状11
    1.2.2煤岩电磁辐射机理研究现状13
    1.2.3煤岩电磁辐射特征研究现状14
    1.2.4电磁辐射预测预报煤岩灾害动力现象研究现状15
    1.2.5目前电磁辐射需要研究的课题17
    1.3本书主要研究内容18
    第2章受载煤岩电磁辐射的试验研究19
    2.1试验系统、试验方案及试验样品19
    2.1.1试验样品及其制备方法19
    2.1.2试验系统21
    2.1.3试验研究内容23
    2.2单轴压缩电磁辐射特征24
    2.2.1单轴压缩煤岩混凝土电磁辐射的试验结果24
    2.2.2煤样受载后快速卸载过程的电磁辐射时序试验结果32
    2.2.3煤岩样冲击过程的电磁辐射特征33
    2.2.4煤岩摩擦过程的电磁辐射特征35
    2.3组合煤岩破坏过程的电磁辐射特征38
    2.3.1组合煤岩样单轴压缩下应力分析38
    2.3.2组合煤岩的单轴强度条件分析40
    2.3.3受载组合煤岩的电磁辐射试验结果41
    2.4煤岩电磁辐射幅值规律45
    2.4.1单轴压缩煤岩混凝土电磁辐射的幅值变化特征45
    2.4.2单轴压缩组合煤岩电磁辐射的幅值变化特征48
    2.4.3冲击过程电磁辐射的强度变化特征50
    2.4.4摩擦过程电磁辐射的强度变化特征53
    2.5煤岩流变破坏电磁辐射记忆效应规律54
    2.5.1循环加载应力的确定54
    2.5.2煤岩破坏电磁辐射记忆效应试验结果55
    2.5.3瓦斯、水对煤岩破坏电磁辐射记忆效应的影响61
    2.6小结63
    第3章含瓦斯煤岩受载破坏电磁辐射试验研究65
    3.1试验系统及方案65
    3.1.1试验系统65
    3.1.2试验方案70
    3.2试样制备及试验准备71
    3.3煤岩力学特性及电磁辐射特征72
    3.3.1煤岩单轴压缩破坏力学特性及电磁辐射特征72
    3.3.2含瓦斯煤岩单轴压缩破坏的变形特征79
    3.3.3孔隙瓦斯对煤岩峰值强度的影响81
    3.3.4孔隙气体对煤岩弹性模量的影响83
    3.3.5含瓦斯煤岩受载破坏过程中的电磁辐射特征84
    3.4小结88
    第4章煤岩电磁辐射信号频谱特征研究90
    4.1组合煤岩电磁辐射试验研究90
    4.1.1组合煤岩样的制作91
    4.1.2单一煤体单轴压缩电磁辐射信号特征91
    4.1.3组合煤岩电磁辐射信号特征93
    4.2煤岩变形破坏电磁辐射信号频谱分析95
    4.2.1煤体单轴压缩电磁辐射信号频谱分析95
    4.2.2组合煤岩变形破坏电磁辐射信号频谱分析101
    4.2.3傅里叶谱与功率谱的对比分析112
    4.3基于小波变换的电磁辐射信号特征分析112
    4.3.1基于小波的电磁辐射信号特征分析的基本方法112
    4.3.2煤体单轴压缩电磁辐射信号小波特征频谱分析113
    4.3.3组合煤岩电磁辐射信号小波特征频谱分析122
    4.3.4频谱分析与小波分析的结果比较137
    4.4基于希尔伯特黄变换(HHT)电磁辐射频谱分析137
    4.4.1HHT分析法137
    4.4.2电磁辐射信号的HHT分析142
    4.5小结158
    第5章煤岩电磁辐射信号噪声频谱特征及抑制研究159
    5.1煤岩电磁辐射信号的传播途径159
    5.2煤岩电磁辐射信号采集过程噪声分析160
    5.2.1电磁辐射信号实验室采集过程中噪声来源160
    5.2.2电磁辐射信号现场采集过程中噪声来源161
    5.3煤岩电磁辐射监测抗干扰技术161
    5.3.1屏蔽技术161
    5.3.2滤波技术162
    5.4电磁辐射信号的小波降噪方法163
    5.4.1小波变换降噪模型和降噪过程163
    5.4.2小波变换降噪阈值选取与确定165
    5.5基于小波理论的电磁辐射信号降噪167
    5.5.1单一煤样电磁辐射信号的小波去噪167
    5.5.2组合煤岩电磁辐射信号的小波去噪171
    5.6工作面电磁辐射信号的噪声抑制技术177
    5.6.1不同噪声源的电磁辐射信号频谱特征177
    5.6.2工作面电磁辐射信号去噪185
    5.7小结190
    第6章煤岩变形破坏电磁辐射的非线性预测方法192
    6.1煤岩破裂过程声发射和电磁辐射信号的混沌特征192
    6.1.1关联维数及其计算192
    6.1.2声发射和电磁辐射信号的混沌特征194
    6.2煤岩变形破坏电磁辐射的神经网络预测方法研究195
    6.3自适应BP神经网络的基本原理及实现步骤196
    6.4煤岩变形破裂电磁辐射自适应神经网络预测原理198
    6.4.1电磁辐射参数时间序列维数的选定198
    6.4.2自适应神经网络预测原理198
    6.5自适应神经网络在煤岩电磁辐射信号预测中的应用199
    6.6小结201
    第7章煤岩电磁辐射接收天线特征参数及模拟研究202
    7.1引言202
    7.1.1天线定义202
    7.1.2天线基本参数204
    7.1.3天线极化波209
    7.2煤岩电磁辐射接收天线特征参数及测量方法210
    7.2.1电磁辐射接收天线设计原则211
    7.2.2电磁辐射接收天线基本特性213
    7.2.3电磁辐射接收天线参数测量216
    7.3煤岩电磁辐射接收天线模拟技术220
    7.3.1HFSS软件及其相关技术定义220
    7.3.2煤岩电磁辐射场仿真研究222
    7.3.3电磁辐射接收天线仿真研究227
    7.4小结237
    第8章煤岩力电耦合模型及动力灾害预警准则239
    8.1引言239
    8.1.1损伤力学及其发展239
    8.1.2煤岩强度的统计损伤理论241
    8.1.3煤岩材料的损伤力学模型241
    8.1.4基于Weibull分布的煤岩强度统计损伤模型242
    8.1.5基于正态分布的煤岩强度统计损伤模型244
    8.1.6三维煤岩力学损伤本构关系245
    8.2煤岩力电耦合的损伤力学模型247
    8.2.1基于电磁辐射脉冲数的一维煤岩力电耦合模型248
    8.2.2基于电磁辐射脉冲数的三维煤岩力电耦合模型249
    8.2.3基于电磁辐射强度的煤岩力电耦合模型252
    8.3力电耦合模型相关参数计算253
    8.3.1力电耦合模型的相关参数意义253
    8.3.2力电耦合模型参数的计算方法253
    8.3.3计算结果253
    8.4煤岩力电耦合模型的应用255
    8.4.1煤岩均匀性对电磁辐射的影响255
    8.4.2不同围压对煤岩电磁辐射的影响256
    8.4.3单轴压缩煤岩样突然卸载时的电磁辐射特征257
    8.4.4循环加载过程的电磁辐射特征258
    8.5矿山煤岩电磁辐射预警准则259
    8.5.1电磁辐射监测预警指标259
    8.5.2煤岩动力灾害电磁辐射预警准则259
    8.5.3预警临界值及动态趋势系数的确定261
    8.5.4煤岩动力灾害电磁辐射预警技术262
    8.6小结263
    第9章电磁辐射监测煤岩体应力状态技术及应用264
    9.1电磁辐射评价煤岩体应力状态技术原理264
    9.2煤岩体前方应力区域电磁辐射评价技术268
    9.2.1掘进工作面应力状态电磁辐射测试269
    9.2.2回采工作面前方应力状态电磁辐射测试271
    9.3采掘应力场电磁辐射监测评价技术274
    9.3.1掘进巷两帮应力状态电磁辐射监测技术274
    9.3.2回风巷煤壁应力状态电磁辐射监测技术277
    9.4回采工作面周期来压电磁辐射监测技术278
    9.4.1回采工作面前方非接触式电磁辐射测试结果278
    9.4.2回采工作面非接触式电磁辐射测试结果281
    9.4.3回采工作面顶板周期来压钻孔电磁辐射测试结果282
    9.5小结285
    第10章煤岩电磁辐射监测技术的应用研究286
    10.1电磁辐射监测技术286
    10.2电磁辐射测试装备287
    10.2.1 KBD5便携式电磁辐射监测仪的组成及功能287
    10.2.2 KBD7煤岩动力灾害非接触电磁辐射监测仪292
    10.3电磁辐射监测技术在煤与瓦斯突出预测中的应用297
    10.3.1 3248运输联巷基本情况297
    10.3.2 KBD7电磁辐射监测仪测试与分析298
    10.3.3电磁辐射的影响因素分析307
    10.3.4电磁辐射规律分析与实施步骤317
    10.4电磁辐射监测技术在冲击矿压预测中的应用317
    10.4.1冲击矿压发生前后的电磁辐射变化规律319
    10.4.2电磁辐射与微震震级间的关系319
    10.5煤岩电磁辐射监测技术发展趋势320
    10.5.1“智慧线”通信技术320
    10.5.2“智慧线”技术在煤岩电磁辐射监测中的应用322
    10.6小结324
    参考文献325
    Contents
    Preface
    Chapter 1Introduction1
    1.1Advances in coal or rock dynamic disasters research1
    1.1.1The phenomenon of coal and gas outburst1
    1.1.2The review of mechanism of coal and gas outburst 2
    1.1.3The review of mechanism of rock burst8
    1.2The situation of the electromagnetic emission of coal or rock11
    1.2.1The review of electromagnetic emission (EME) in earthquake prediction11
    1.2.2The review of EME mechanism of coal or rock13
    1.2.3The review of EME characteristics of coal or rock14
    1.2.4The review of EME in prediction of coal or rock dynamic disasters15
    1.2.5The research topic of EME17
    1.3The research contents18
    Chapter 2EME experimental study of coal or rock under load19
    2.1Experimental system and test plan19
    2.1.1Test samples and their preparation method19
    2.1.2Experimental system21
    2.1.3Experimental research contents23
    2.2Characteristics of EME under uniaxial compression24
    2.2.1EME experimental results of coal, rock and concrete under uniaxial compressive24
    2.2.2EME experimental results of coal during quick uploading32
    2.2.3EME characteristics of coal or rock in the impact process33
    2.2.4EME characteristics of coal or rock in the friction process35
    2.3EME characteristics of coalrock combination fracture38
    2.3.1Stress analysis of coalrock combination under uniaxial compression38
    2.3.2Strength analysis of coalrock combination under uniaxial compression40
    2.3.3EME experimental results of coalrock combination under load41
    2.4EME amplitude law of coal or rock45
    2.4.1EME amplitude variation of coal, rock and concrete under uniaxial compressive45
    2.4.2EME amplitude variation of coalrock combination under uniaxial compressive48
    2.4.3EME intensity variation in the impact process50
    2.4.4EME intensity variation in the friction process53
    2.5EME memory effect law of coal or rock rheological fracture54
    2.5.1Cyclic loading stress54
    2.5.2EME memory effect experimental results of coal or rock fracture55
    2.5.3Influence of gas and water on EME memory effect of coal or rock fracture61
    2.6Summary63
    Chapter 3EME experimental study of coal or rock containing gas fracture65
    3.1Experimental systems and test plan65
    3.1.1Experimental system65
    3.1.2Experimental plan70
    3.2Preparation of samples and experimental71
    3.3Mechanical properties and EME characteristics of coal or rock72
    3.3.1Mechanical properties and EME characteristics of coal or rock under uniaxial compression72
    3.3.2Deformation characteristics of coal containing gas under uniaxial compressive79
    3.3.3Influence of pore gas on the peak intensity of coal or rock 81
    3.3.4Influence of pore gas on the elastic modulus of coal or rock 83
    3.3.5EME characteristics of coal or rock containing gas fracture84
    3.4Summary88
    Chapter 4EME spectral characteristics of coal or rock90
    4.1EME experimental study of coalrock combination90
    4.1.1Preparation of coalrock combination samples90
    4.1.2EME characteristics of coal under uniaxial compression91
    4.1.3EME characteristics of coalrock combination fracture93
    4.2EME spectrum analysis of coal or rock fracture95
    4.2.1EME spectrum analysis of coal under uniaxial compression95
    4.2.2EME spectrum analysis of coalrock combination fracture101
    4.2.3Comparison between the Fourier spectrum and power spectrum112
    4.3Analysis of EME based on wavelet transform 112
    4.3.1Basic analysis method of EME based on wavelet transform112
    4.3.2EME wavelet spectrum analysis of coal under uniaxial compression113
    4.3.3EME wavelet spectrum analysis of coalrock combination fracture122
    4.3.4Comparison between the spectral analysis and wavelet analysis137
    4.4EME spectrum analysis based on HilbertHuang Transform (HHT)137
    4.4.1HHT Method137
    4.4.2HHT analysis of EME142
    4.5Summary158
    Chapter 5Noise spectral characteristics in EME of coal or rock and its suppression159
    5.1EME pathways of coal or rock159
    5.2Noise analysis in EME of coal or rock during signal acquisition process 160
    5.2.1Noise sources in EME during signal acquisition process at the laboratory160
    5.2.2Noise sources in EME during signal acquisition process on site161
    5.3Jamming technology of EME monitoring of coal or rock161
    5.3.1Shielding technology161
    5.3.2Filtering Technology162
    5.4Denoising method of EME using wavelet transform163
    5.4.1Denoising mode and process using wavelet transform163
    5.4.2Threshold of denoising using wavelet transform165
    5.5Denoising of EME based on wavelet theory167
    5.5.1EME denoising of coal using wavelet transform167
    5.5.2EME denoising of coalrock combination using wavelet transform171
    5.6Denoising technology of EME in coal face177
    5.6.1EME spectral characteristics of different noise sources177
    5.6.2Denoising of EME in coal face185
    5.7Summary190
    Chapter 6EME nonlinear prediction method of coal or rock fracture192
    6.1Chaos characteristics of acoustic emission and EME of coal or rock fracture192
    6.1.1Correlation dimension and its calculation192
    6.1.2Chaos characteristics of acoustic emission and EME194
    6.2EME neural network prediction method of coal or rock fracture195
    6.3The basic principle and implementation steps of adaptive BP neural network196
    6.4Principles of adaptive neural network prediction for EME of coal or rock fracture198
    6.4.1Time series dimension of EME parameters198
    6.4.2Principles of adaptive neural network prediction198
    6.5Applications of adaptive neural network prediction in EME of coal or rock199
    6.6Summary201
    Chapter 7Characteristic parameters and simulation study of EME receiving antenna of coal or rock202
    7.1Introduction202
    7.1.1Antenna definition202
    7.1.2The basic parameters of antenna204
    7.1.3Antenna polarized wave209
    7.2Characteristic parameters and measurement of EME receiving antenna of coal or rock210
    7.2.1Design principles of EME receiving antenna211
    7.2.2Basic characteristics of EME receiving antenna213
    7.2.3Parameter measurement of EME receiving antenna216
    7.3Simulation technology of EME receiving antenna of coal or rock220
    7.3.1HFSS software and its technical definition220
    7.3.2EME filed simulation study of coal or rock222
    7.3.3Simulation study of EME receiving antenna227
    7.4Summary237
    Chapter 8Electromechanical coupling model for EME of coal or rock and guidelines of disaster warning239
    8.1Introduction239
    8.1.1Damage mechanics and its development239
    8.1.2Statistical damage theory of coal or rock strength241
    8.1.3Damage mechanics model of coal or rock materials241
    8.1.4Statistical damage model of coal or rock strength based on the Weibull distribution242
    8.1.5Statistical damage theory of coal or rock strength based on normal distribution244
    8.1.6Damage Mechanical model of three dimensional coal or rock245
    8.2Damage mechanics model of coal or rock based on electromechanical coupling model247
    8.2.1D electromechanical coupling model of coal or rock based on the pulses of EME248
    8.2.2D electromechanical coupling model of coal or rock based on the pulses of EME249
    8.2.3Electromechanical coupling model of coal or rock based on the intensity of EME252
    8.3Parameters calculation of electromechanical coupling model 253
    8.3.1Parameters significance of electromechanical coupling model253
    8.3.2Parameters calculation253
    8.3.3Calculation results253
    8.4Application of electromechanical coupling model of coal or rock255
    8.4.1Influence of the uniformity of coal or rock on the EME255
    8.4.2Influence of different confining pressure on the EME of coal or rock256
    8.4.3Characteristics of EME when uniaxial compression sudden unloading of coal or rock257
    8.4.4Characteristics of EME during cyclic loading258
    8.5EME warning criteria of coal or rock259
    8.5.1Early warning indicators of EME monitoring259
    8.5.2EME warning criteria of coal or rock dynamic disasters259
    8.5.3Warning thresholds and dynamic trends coefficients259
    8.5.4EME warning technology of coal or rock dynamic disasters 262
    8.6Summary263
    Chapter 9EME monitoring technology of coal or rock stress and applications264
    9.1Technical principles of coal or rock stress evaluation by EME264
    9.2EME monitoring technology of stress region in front of coal or rock268
    9.2.1EME monitoring of stress state on the excavation face269
    9.2.2EME monitoring of stress state in front of working face271
    9.3EME monitoring technology of mining stress field274
    9.3.1EME monitoring technology of stress state in cutting roadway274
    9.3.2EME monitoring technology of stress state in return airway277
    9.4EME monitoring technology of cycle pressure in working face278
    9.4.1Noncontact monitoring results of EME in front of working face278
    9.4.2Noncontact monitoring results of EME in working face281
    9.4.3EME monitoring study of periodic roof pressure in working face282
    9.5Summary285
    Chapter 10Field applications of EME monitoring technology of coal or rock286
    10.1EME monitoring technology286
    10.2EME monitoring equipment287
    10.2.1KBD5 portable EME monitor287
    10.2.2KBD7 noncontact EME monitor292
    10.3EME monitoring technology in coal and gas outburst prediction297
    10.3.1Basic situation of transportation lane297
    10.3.2EME test and analysis using KBD7 monitor298
    10.3.3Factors analysis of EME307
    10.3.4Law analysis and implementation steps of EME313
    10.4EME monitoring technology in rock burst prediction317
    10.4.1Variation of EME before and after rock burst occurred 317
    10.4.2Relationship between EME and magnitude of microseismic319
    10.5Trends of EME monitoring technology320
    10.5.1“The Smartcable” communication technology320
    10.5.2EME monitoring technology based on “The Smartcable”322
    10.6Summary324
    References325
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证