0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 光学 > Diffraction Calculation and Digital Holography II

相同语种的商品

浏览历史

Diffraction Calculation and Digital Holography II


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Diffraction Calculation and Digital Holography II
  • 书号:9787030490919
    作者:李俊昌,吴艳梅
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:360
    字数:300
    语种:en
  • 出版社:
    出版时间:2016-08-08
  • 所属分类:
  • 定价: ¥148.00元
    售价: ¥116.92元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Table of Contents
    Introduction
    Chapter6 Reconstructing Wavefronts Propagated through an Optical System 307
    6.1General Discussion of Wavefront Reconstruction 308
    6.1.1CCD Detection Information Research Based on the Abbe Imaging Theory 308
    6.1.2Impulse Responseo fthe Process 309
    6.2 Digital Holography with a Zoom 318
    6.2.1Principle of the Zoom 318
    6.2.2Study of the Zoom 319
    6.2.3Design of the Zoom 320
    6.3 Reconstructing an Image by Collins’ Formula 322
    6.3.1Reconstruction Algorithm 322
    6.3.2Adjustable-magni.cation Reconstruction after Propagation across an Optical System 326
    6.4Usingthe Classical Di.raction Formulato Reconstruct the Wavefrontafter Propagation across an Optical System 332
    6.4.1Use of the Rigorous Di.raction Formula 332
    6.4.2ReconstructionoftheObjectWaveintheObjectandImageSpaces 337
    6.4.3Digital Holographic Measurement of Matrix Elements in Optical System 342
    References 348
    Chapter7 Basic Principles and Common Techniques of Holographic Interferometry 351
    7.1SingleExposureMethodorReal-timeHologramInterferometry 351
    7.1.1Basic Principle of Single Exposure Method 351
    7.1.2Example of Real Time Holographic Interferometry 356
    7.1.3The Application of Special Carrier Phase-shifting in Real Time Holographic Testing 367
    7.2 Double Exposure Method 372
    7.2.1Basic Principles of Double Exposure Method 372
    7.2.2Examples of Object Displacement Measurement and One Dimensional Measurement of Object Displacement 375
    7.2.3Testing of Three Dimensional Displace ment Field with Double Expo sure Method 380
    7.3Time Average Method 382
    7.3.1Basic Principle of Time Average Method 382
    7.3.2Example of Time Average Measurement 384
    References 387
    Chapter 8 Application of Digital Holography in Optical Testing 389
    8.1Creating Digital Holographic Interferogram and Its Phase Unwrapping 390
    8.1.1Creating Digital Holographic Interferogram and Its Representation 390
    8.1.2PhaseUnwrappingofInterferogram 395
    8.2Common Techni quesin Digital Holographic Testing 410
    8.2.1Digital Holographic Testing for Three Dimensional Pro.lometry 411
    8.2.2Digital Holographic Testing of Micro Deformation of Object 420
    8.2.3Time Average Method Digital Holography Vibration Analysis 423
    8.2.4Three-dimensional Particle Field Detection 425
    8.3Digital Holo graphy Testing with Physical Optical Trans formation System 428
    8.3.1General Discussion of Digital Holography System on Image Plane 429
    8.3.2Micro Digital Holography Testing of Tiny Object 430
    8.3.3Digital Holography Testing Example of Large-size Object 434
    8.4TheSpecialTechnologyofDigitalHolographicInterferometry 440
    8.4.1Digital Holographic Detecting Technology of Transient Process of Femto second Laser 440
    8.4.2Common Path Coaxial Macro-digital Holography Detection 444
    8.4.3Digital Holography Microscopy of Low Coherent LED Illuminating 449
    8.5Digital Holography CT 452
    8.5.1Radon Trans formation Introduction 453
    8.5.2Digital Holography CT Principle 454
    8.5.3The Detection Simulation of Digital Holographic VT 455
    8.5.4Application Example of Microscopy Digital Holography CT Detection 457
    8.6Multifunctional Digital Holography Detecting System 459
    References 460
    Chapter 9 Study of Digital Holographic 3D Display and Animation Algorithm 464
    9.1 The Research Status of Traditional Holography and Digital 3D Display 465
    9.1.1TheDevelopmentSituationofTraditionalHolographic3DDisplayTechnology 465
    9.1.2The Research Progress of Digital Holographic 3D Display Technology 466
    9.1.3Advantages and Challenges of Digital Holographic 3D Display Technology 469
    9.2Digital Micromirror Device and Its Application in Digital Holographic 3D Display 472
    9.2.1Working Principle of DMD 472
    9.2.2DMD Display of Hologram 475
    9.2.3Transient Impulse Responseof DMD 3D Display 477
    9.2.4Discussionon Point Source Defocused Image of DMD 3DDisplay System 483
    9.2.5Approximate Computationand Experimental Demonstration of DMD Reconstructed Image 485
    9.3Principle of LCOS and Its Application in Digital Holographic 3D Display 488
    9.3.1Brief Introductionon the Structureand Working PrincipleofLCOS 488
    9.3.2Study of Holographic Image Display System Based on LCOS 489
    9.3.3Sketchfor Technology of Exp anding 3D Recons tructedImage ViewField 499
    9.3.4Hologram Encodingand3D Display Containing Accurate Information of Amplitude and Phase 504
    9.3.5 Holographic 3D Imaging Device Study Based on LCOS and Selective Filtering System 513
    9.4 Di.raction Field Computation of 3D Object in the Digital Holographic Display Study 519
    9.4.1C-LUT Rapid Computation Based on Point Source Method 520
    9.4.2“Light Source Trans formation Method” of Trans forming Light Sourceof Curved Surfaceinto Planar Light Source 530
    9.4.3 Modi.cation of LUT Algorithm and Surface Source Method Based on Field Depth of Holographic 3D Image 536
    9.5 Study of Holographic 3D Animation Algorithm 539
    9.5.1Figure Descriptionof3D Object Surfaceand Basic Modelling Techno logy 540
    9.5.2Simulation Studyof Holographic3D Animation Basedon Annular SLM Array 544
    9.6 Conclusion 548 References 549 Appendix AFundamental Knowledge of Computer Image 554
    A1Tricolor Princip leandthe Digital Representationofthe Image 554
    A2Two-dimen sional Intensity Distri butionof Digital Image 557
    AppendixBComputationProceduresandApplicationExamples 559
    B1Analytical Calculationofa RectangularApertureFraunhoferDi.raction 260
    B2Analytical Calculationofa Circular Aperture Fraunhofer Di.raction 562
    B3Analytical Calculationofa Triangle Aperture Fraunhofer Di.ractionand IFFT Reconstruction Image 564
    B4Analytical Calculationofa Rectangular ApertureFresnel Di.raction 568
    B5S-FFT Calculation of Fresnel Di.raction 572
    B6D-FFT Calculation of Classic Di.raction Formulae 575
    B7S-FFT Calculation of Collins Formula 582
    B8S-FFT Calculation of Collins Formula 585
    B9FresnelDi.ractionand Its Inverse Operation of the Tilted Triangular Aperture 588
    B10Fresnel Di.ractionand Its Inverse operation of the Inclined Surface Light Source 592
    B11Coaxial Digital Hologramandthe Wave Front Reconstructionbythe Four-steps Phase Shift Method 597
    B12O-axis Digital Hologram Generated by Monochromatic Illumination 601
    B131-FFT Reconstruction Digital Hologram 604
    B14DDBFT Reconstruction Digital Hologram 607
    B15VDH4FFT Reconstruction Digital Hologram 613
    B16FIMG4FFT Reconstruction Digital Hologram 617
    B17Read,Decom positionand Storage for the True ColorImage Files 621
    B18True-colorO.-axis Digital Hologram Generated by theTricolorIllumination 625
    B19True Color Digital Hologram Reconstruction by FIMG4FFT 632
    B20Double-exposure Digital Hologram for the Micro Deformable Object 641
    B21Reconstruction and Interferometry Images Based on the Double-exposure Digital Holography 647
    B22Kinoform Generated by Loading on the Spatial Light Modulator LCOS 653
    B233DHologram Encodingand Simulated Imaging Calculation Without Distortion of Amplitude and Phase 658
    Appendix CCD Contentsinthe Diffraction Calculationand DigitalHolography 665
    Diffraction Calculationand DigitalHolographyI
    Chapter 1 Mathematical Prerequisites 1
    1.1FrequentlyUsedSpecialFunctions 1
    1.1.1The “Rectangle” Function 1
    1.1.2The “Sinc” Function 2
    1.1.3The “Step” function 3
    1.1.4The “Sign” Function 4
    1.1.5The“Triangle”Function 5
    1.1.6The “Disk”Function 6
    1.1.7The Dirac δ Function 6
    1.1.8The“Comb”Function 9
    1.2Two-dimensionalFourierTransform 9
    1.2.1De.nition and Existence Conditions 9
    1.2.2Theorems Relatedtothe Fourier Transform 11
    1.2.3Fourier Transformsin Polar Coordinates 12
    1.3 Linear Systems 13
    1.3.1De.nition 13
    1.3.2Impulse Responseand SuperpositionI ntegrals 14
    1.3.3De.nitionofa Two-dimensional LinearShift-invariant System 15
    1.3.4Transfer Functionsand Eigenfunction 16
    1.4 Two-dimensional Sampling Theorem 17
    1.4.1SamplingaContinuousFunction 17
    1.4.2Reconstruction of the Original Function 19
    1.4.3Space-bandwidth Product 20
    References 21
    Chapter 2 Scalar Di.raction Theory 22
    2.1The Representationofan Optical Wavebya Complex Function 23
    2.1.1The Representationofa Monochromatic Wave 23
    2.1.2The Expression of the Optical Field in Space 24
    2.1.3Complex Amplitudes of Plane and Spherical Waves in a Space Plane 26
    2.2 Scalar Di.raction Theory 27
    2.2.1Wave Equation 27
    2.2.2Harmonic Plane Wave Solutionstothe Wave Equation 29
    2.2.3Angular Spectrum 29
    2.2.4Kirchho.and Rayleigh-Sommerfeld Formula 33
    2.2.5Paraxial Approximation of Di.raction Problem——Fresnel Di.raction Integral 34
    2.2.6Fraunhofer Di.raction 36
    2.3ExamplesofFraunhoferDi.raction 37
    2.3.1Fraunhofer Di.raction Patternfroma Rectangular Aperture 37
    2.3.2Fraunhofer Di.ractionofa Circular Aperture 39
    2.3.3TheDi.raction Imageof Triangle Apertureon the Focal Plane 41
    2.3.4Fraunhofer Di.raction Patternfroma Sinusoidal-amplitude Grating 44
    2.4Fresnel Di.ractionIntegral Analyticaland Semi-analytical Calculation 46
    2.4.1Fresnel Di.raction froma Sinusoidal-amplitudeGrating 46
    2.4.2Fresnel Di.raction froma Rectangular Aperture 49
    2.4.3Fresnel Di.ractionfromaComplex Shape Aperture 51
    2.4.4The Di.raction Field of Refraction Prism Array by Using the RectangularApertureDi.ractionFormula 54
    2.4.5Fresnel Di.raction froma Triangle Aperture 57
    2.5Collins’ Formula 58
    2.5.1Description of an Optical System by an ABCD Transfer Matrix 59
    2.5.2ABCDLawandEquivalentParaxiaLensSystems 64
    2.5.3ProofofCollins’Formula 67
    2.6Discussion of Optical Trans form Propertiesof Single Lens System Based on Collins’ Formula 72
    2.6.1Objectin Front of the Lens 73
    2.6.2Object Behind the Lens 77
    References 79
    Chapter 3 Di.raction Numerical Calculation and Application Examples 81
    3.1Relation betweenthe Discreteand Analytical Fourier Transforms 82
    3.1.1Samplingand Periodic Expansionofa Continuous Two-dimensional Function 82
    3.1.2The Relation betweenthe Discreteand Continuous Fourier Transforms 83
    3.2Calculatingthe Fresnel Di.ractionIntegral b yFast Fourier Transform 87
    3.2.1Calculating Di.raction by the S-FFT Method 87
    3.2.2Numerical Calculation and Experimental Demonstration 89
    3.2.3The D-FFT Method 91
    3.2.4Experimental Demonstration of the D-FFT Method 93
    3.2.5FractionalFourier Transform of Fresnel Di.ractionandIts Calculation 95
    3.2.6Di.raction Calculation Based on the Virtual Light Field 101
    3.2.7SyntheticApertureFresnelDi.ractionandItsCalculation 104
    3.3Calculation of the Classical Di.raction Formula Using FFT 106
    3.3.1Kirchho.and Rayleigh-Sommerfeld Formulain Convolution Form 107
    3.3.2Uni.ed Presentation of the Classical Di.raction Formula 108
    3.3.3Study of the Sampling Conditions of the Classical Formula 109
    3.3.4Discussion of Actual Sampling Conditions Based on the Principle of Energy Conservation 111
    3.3.5Example of Calculations of the Classical Di.raction Formula 112
    3.3.6Summary of Classical Di.raction Calculation 115
    3.3.7Inverse Calculation of the Classical Di.raction Integral 116
    3.4 Numerical Calculation of Collins’ Formula 118
    3.4.1Collins’FormulaandItsInverse 118
    3.4.2Calculating Collins’ Formula by S-FFT 119
    3.4.3CalculatingtheInverseCollinsFormulabyS-FFT 121
    3.4.4Calculating Collins’ Formula by D-FFT 123
    3.4.5CalculatingtheInverseCollinsFormulabyD-FFT 124
    3.4.6Numerical Calculation and Experimental Demonstration 125
    3.5 The Calculation of Space Curve Surface Di.raction Field 129
    3.5.1Di.raction Calculation of Tilt Shiny Surface and Oblique Observation Plane 129
    3.5.2Di.raction Field Calculation of Shiny Surface as the Space Curved Surface 137
    3.5.3Di.raction Field Calculation of the Observation Plane as Spatial Curved Surface 141
    3.6ApplicationExample 143
    3.6.1Design of Binary Optical Element 143
    3.6.2Triangle Surface Source Collection Algorithm in the Application of CGH 150
    3.6.3Application Example of Space Observation Surface Di.raction Field 154
    References 158
    Chapter 4 Fundamentals of Holography 161
    4.1 Basics of Holography 162
    4.1.1Holography Overview 162
    4.1.2Coaxial Hologram 164
    4.1.3O.-axis Hologram 165
    4.1.4Condition for the Separation of Di.raction Image of the O-axis Hologram 169
    4.2Partially Coherent Light and Its Use in Holography 171
    4.2.1Analytic Signal Describinga Non-monochromaticWave 171
    4.2.2Recording a Hologram with Non-monochromatic Light 174
    4.2.3Total Coherence Approximation Conditions 176
    4.2.4Recording a Fresnel Hologram 181
    4.3Fresnel Hologramand the Study of the Properties of the Reconstructed Image 182
    4.3.1Recording the Hologram of a Point Source 182
    4.3.2Reconstructing the Hologram of a Point Source 183
    4.3.3Magni.cations 186
    4.3.4Resolution of the Reconstructed Image 187
    4.4 Di.erent Types of Hologram 190
    4.4.1The Fraunhofer Hologram 190
    4.4.2The Fourier Hologram 190
    4.4.3The Lens-less Fourier Hologram 194
    4.4.4The Image Hologram 197
    4.4.5The Phase Hologram 198
    4.5Di.raction E.ciency of Plane Hologram 199
    4.5.1Di.raction E.ciency of Amplitude Hologram 200
    4.5.2Di.raction E.ciency of Phase Hologram 200
    References 201
    Chapter5 Digita lHolographyand Object Wave-front Reconstruction Calculation 203
    5.1O-axis Digital Holography and 1-FFT Wave-front Reconstruction 204
    5.1.1O-axis Digital Holographic Recording System 204
    5.1.2Recording of Digital Hologram and Propagation Characteristics of Transmission Light in Reconstruction 205
    5.1.3Design of O.-axis Digital Holographic System 210
    5.1.4Optimized Simul ationand Experimental Studyof O-axis Digital Holographic System 211
    5.1.5Discussions on the Quality of Wave-front Reconstruction 215
    5.2 Study and Elimination of Wave-front Noise by 1-FFT Reconstruction 220
    5.2.1Di.raction E.ciency of Digital Hologram 220
    5.2.2Direct Elimination of Zero-order Di.raction Interference 221
    5.2.3Object Light Complex Amplitude Direct Obtaining Method 224
    5.3Object Field Reconstruction Basedon Double Fresnel Trans form(DBFT) Algorithm and Virtual Digital Hologram 227
    5.3.1Wave-front Reconstruction Based on DBFT Algorithm 228
    5.3.2The Wave-front Reconstruction Algorithm Based on Virtual Digital Hologram 233
    5.4The Wave-front Reconstruction Basedon Spherical Reconstructed Waveand Angular Spectrum Di.raction Theory 238
    5.4.1Wave-front Reconstruction with Adjustable Magni.cation When SphericalWaveisReconstructedWave 239
    5.4.2Experiments of Wave-front Recon struction with A djustable Magni cation 242
    5.4.3Study on the Noise Elimination in Wave-front Reconstruction with Controllable Magni.cation 244
    5.4.4Study on Wave-front Reconstruction Quality by FIMG4FFT 258
    5.5 Depth of Focus (DOF) of Digital Holographic Reconstructed Image 266
    5.5.1Theoretical Study of Digital Holographic Reconstructed Image DOF 266
    5.5.2Experimental Study on Depth of Focus of Reconstructed Image of Digital Hologram 272
    5.5.3Discussion on Focal Depth Study and Its Application 276
    5.6TrueColor Digital Hologram of Diracted Object 276
    5.6.1Zero Padding 1-FFT Reconstruction Method for Getting Uniform Physical Size 278
    5.6.2Experiment and Comparison of DDBFT and FIMG4FFT Algorithms 282
    5.6.3Comparison of True Color Images Reconstructed with FIMG4FFT and SPH4FFT 283
    5.6.4ExperimentalStudyonReconstructingTrueColorImagewithVDH4FFT 287
    5.7Super-resolution Recording and Reconstruction of Digital Holographic Field 288
    5.7.1Research of CCD Detecting Information Based on Sampling Theorem and Angular Spectrum Di.raction Theory 290
    5.7.2The Optimization of Super-resolution O.-axis Digital Holographic Recording System 292
    5.7.3TheWavefrontReconstructionMethodofSuper-resolutionRecording Hologram 293
    5.7.4The Simulation of Wave front Recon struction of Super Resolution Recording System 293
    5.7.5Basic Principle of O-axis High Resolution Digital Recording Through Illuminating Light Angle Change 296
    5.7.6SimulatedReconstructionofSuperResolutionObjectLightField 298
    5.7.7Quasi-simultaneous Recording of Sub Hologram with Femto second Laser and Object Light Reconstruction 300
    References 302
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证